
A hybrid approach to assessing the maturity
of Requirements Engineering practices in agile projectsI

Mirosław Ochodeka,∗, Sylwia Kopczyńskaa, Tomasz Jerzy Paszekb

aPoznan University of Technology
Faculty of Computing, Institute of Computing Science

ul. Piotrowo 2, 60-965 Poznań, Poland
Tel.: +48-61-6652944
Fax: +48-61-8771525

bUnity Technologies — unity3d.com

Abstract

Context: Requirements Engineering (RE) is one of the key processes in software development. With the advent of agile
software development methods, new challenges have emerged for traditional, prescriptive maturity models aiming to
support the improvement of RE process. One of the main problems is that frequently the guidelines prescribed by agile
software development methods have to be adapted to a project’s context to provide benefits. Therefore, it might be
naive to believe that it is possible to propose a prescriptive method of RE process improvement that will suit all agile
projects without any alteration.

Objective: The goal of this paper is to propose a hybrid approach to assessing the maturity of agile RE, which combines
elements of prescriptive and problem-oriented improvement methods.

Method: We followed the Design Science Research paradigm to develop an artifact—a maturity model and assessment
method. We based our proposal on literature studies and feedback from IT professionals.

Results: We proposed the Requirements Engineering Maturity Model for Agile software development (REMMA), which
includes two main components: a maturity model for agile RE (a set of state-of-the-art agile RE practices) and an
assessment method that makes it possible to evaluate how well the agile RE practices are implemented. The method
takes into account dependencies between practices and the necessity to adapt them to a certain project context.

Conclusions: The proposed approach seems to be a useful tool to support the process of improving RE practices in
agile projects.

Keywords: Requirements Engineering, process assessment, process maturity, process improvement, agile

1. Introduction

Requirements Engineering (RE) is one of the key pro-
cesses in software development. It aims at identifying, an-
alyzing, documenting and validating requirements for the
system to be developed. It has been observed that when
the RE process is orchestrated properly it can favorably
influence the whole software development process [1, 2].
Conversely, problems related to requirements were often
identified as main causes of famous IT projects’ failures
and software systems’ disasters [3, 4, 5, 6].

With the advent of agile software development meth-
ods, such as eXtreme Programming (XP) [7], Scrum [8],
or Crystal Clear [9], new challenges have emerged for RE.

IThis project was funded by the Poznan University of Technology
internal grant DS 91-518.
∗Corresponding author
Email addresses: mochodek@cs.put.poznan.pl (Mirosław

Ochodek), skopczynska@cs.put.poznan.pl (Sylwia Kopczyńska),
tomasz@unity3d.com (Tomasz Jerzy Paszek)

The agile methods advocate for the iterative discovery
of requirements rather than an exhaustive up-front elici-
tation. They aim at delivering software faster and with
the focus on ensuring that it meets a customer’s chang-
ing needs in environments where developing unambiguous
and complete specifications is often impossible or even in-
appropriate [10].

In order to support evolving requirements and allow for
introducing changes at every stage of the project, agile RE
focuses on preserving continuous and intensive communi-
cation with the customer and advises producing only min-
imal, evolving requirements specifications [10, 11, 12]. As
a result, the approach to planning in agile software devel-
opment projects was changed from traditional—predictive
to adaptive [11].

The need for adaptivity is deeply-rooted in the princi-
ples of the Agile Manifesto [13] that advise teams to regu-
larly reflect on how to become more effective and make use
of the lessons they learned. Although this principle makes

Preprint submitted to Elsevier September 3, 2019

the team responsible for improving the software develop-
ment process, many agile software development methods
introduce additional roles responsible for driving the im-
provement process, e.g., Coach in XP [7], or Scrum Master
[8] (we will refer to all these roles as agile coaches). The
agile coaches are supposed to have decent knowledge of ag-
ile methods to help teams find the best solutions to their
problems, as well as be able to convince management to
allocate necessary resources to support the improvement
process.

Among the different tools that agile coaches can use to
support the improvement process, they can employ one
of the existing agile maturity models (e.g., AMM [14],
SAMI [15]). These tools might be useful for discover-
ing problems in their projects, as they prescribe sets of
guidelines related to the proper usage of practices in agile
projects.

Unfortunately, prescriptive approaches to improvement,
based on existing maturity models, seem to have an im-
portant deficiency in the context of agile software devel-
opment. The state-of-the-art agile practices proposed by
the agile methods and maturity models might work out-
of-the-box for software development projects fitting into
what is sometimes called the ”agile sweet spot” (i.e., small,
co-located teams; an on-site or available customer repre-
sentative; an emphasis on coding and testing early; and
frequent feedback into updated requirements) [16, 17, 18].
Unfortunately, one can never be sure to what extent the
specific characteristics of a particular project make it fit
in or outside that spot. Therefore, the problem is that re-
lying purely on maturity models as a means of driving the
improvement process might be insufficient for many agile
projects. What is needed here is the ability to combine
prescriptive guidelines provided by agile methods and ag-
ile maturity models with the lessons learned from applying
agile methods in specific contexts. The latter usually come
as the results of following problem-oriented (inductive) ap-
proaches to improvement (i.e., team identifies a problem
and tries to solve it taking into account specific context of
the project).

In the paper, we would like to address that problem
by proposing a maturity model and assessment method
to support the improvement of the RE process in agile
projects. The method is called the Requirements Engi-
neering Maturity Model for Agile software development
(REMMA). It is a hybrid method in the sense that it
combines elements characteristic to both prescriptive and
inductive approaches to process improvement.

REMMA was designed to be used by project teams,
and especially agile coaches, to allow them to assess the
implementation of RE practices in their projects with the
use of the following components:

• a prescriptive component that provides a set of guide-
lines related to the appropriate implementation of
the state-of-the-art agile RE practices (including guide-
lines related to preserving the synergetic nature of

the agile practices [19]);

• an inductive component in the form of a model which
explicitly allows incorporating information about how
the specific context of a project affects the usage of
agile RE practices (in the paper, we discuss four ex-
amples of such contexts: the need for adherence to
XP and Scrum, globally distributed software devel-
opment, and the development of safety-critical sys-
tems);

• the assessment method which allows evaluating the
implementation of agile RE practices in a project,
taking into account guidelines related to the imple-
mentation of state-of-the-art agile RE practices, pre-
serving synergy between the practices, and assessing
their appropriateness for the project context.

The paper is structured as follows. In Section, 2 we
introduce the conceptual framework of maturity models
and assessment methods. In Section 3, we present our
research approach and the architecture of REMMA. In
the following sections 4 and 5, we describe the REMMA
model and the assessment method respectively. Related
work is discussed in Section 6. Finally, we conclude the
paper in Section 7.

2. Maturity models and assessment approaches

2.1. Maturity models

Software process assessment and improvement meth-
ods can be divided into two categories: inductive (problem-
based) and prescriptive (model-based). The inductive meth-
ods regard existing problems and weaknesses as the driv-
ing force for improvement, while the prescriptive methods
focus on the alignment with best practices [20].

Each prescriptive method proposes a set of best prac-
tices which when followed will contribute to the success
of software development. The existing sets of best prac-
tices are dedicated either to software development as a
whole, e.g., the CMM model family [21], Agile Maturity
Model (AMM) [14], or to a certain project area or aspect
of software development, e.g., Requirements Engineering:
A Good Practice Guide (REGPG) [21].

The practices in the prescriptive methods are frequently
divided into several categories and arranged hierarchically.
For example, the aforementioned REGPG model proposes
a set of 66 practices and two parallel classification schemes
of practices. The practices are divided into 8 categories
based on the stage of RE in which they are used, e.g.,
elicitation, documentation, and independently into 3 cat-
egories that reflect the level of RE adoption in a project:
basic, intermediate, advanced.

Another example of a hierarchical model is the Require-
ments Engineering Process Maturity (REPM) proposed by
Gorschek [22]. The topmost elements of the model are re-
lated to the main activities of RE (e.g., elicitation) and are

2

called main process areas. Below them are sub-process ar-
eas (e.g., stakeholder identification) and actions, which can
be seen as equivalent to very specific practices (e.g., ask
executive stakeholders).

Interestingly, most of the prescriptive methods unani-
mously use the term practice to refer to certain activities,
however, the results of the literature study by Paivarinta
and Smolander [23] show that the meaning of the term
differs between studies. For instance, some authors under-
stand practice as a set of thoroughly predefined procedures
executed by humans while others perceive it as a set of less
organized activities. Therefore, in order to avoid misun-
derstandings related to the meaning of the term in this
paper, we would like to propose the following definition of
practice:

Definition 1. A practice is a pattern of actions or be-
havior that is recurrently executed by humans in order to
achieve certain goals.

Although the prescriptive methods propose sets of best
practices to be followed, they usually allow for some flex-
ibility in their usage. For instance, McMahon [24] left a
place for alternative practices to be added to the proposed
model if they aim at achieving the same goals. Niazi et
al. [25] and Gorschek [22] allowed for ignoring certain prac-
tices if they seem to be inappropriate for an organization.

To indicate the degree to which the existing processes
are institutionalized and effective [26] with respect to a cer-
tain model, the terms maturity and maturity model were
introduced. The first term—maturity model is understood
as a set of best practices with their classification schema
(e.g., process area, adaptability level). It is expected that
the more convergent the implementation of processes is
with the maturity model, the higher its maturity level.
Therefore, in addition to maturity models, most prescrip-
tive methods propose corresponding, dedicated assessment
methods for determining the level of maturity.

When discussing the idea of maturity, it is important
to emphasize that maturity can be considered at different
levels of an organization. For instance, the CMM family
of methods introduced the concept of organizational ma-
turity, which refers to the extent to which an organization
has explicitly and consistently deployed processes that are
documented, managed, measured, controlled, and contin-
ually improved [27]. In addition, each process in the or-
ganization can be investigated from the perspective of its
capability. Capability characterizes the ability to achieve
current or projected business goals [26]. Organizational
maturity and process capability can be further combined
into what is called organizational capability [28].

Looking at the concept of maturity from the perspec-
tive of agile software development methods, we can no-
tice that agile methods focus on improvement mainly at
the project level [29, 30, 31]. Therefore, although the us-
ability of popular CMM/CMMI frameworks in the agile
context has been demonstrated [24], the application of
these methods, and the ability of agile organizations to

achieve certain levels of maturity in particular, has become
a widely debated concern [32, 33, 34, 35, 29]. In addi-
tion, several works suggest that agile has its own practices
and goals [36], and some plan-oriented practices do not fit
the agile context. Thus, some researchers proposed map-
pings between agile software development methods and the
CMM family methods [37, 38, 39, 30, 40, 41, 42, 31].

Moreover, Fontana et al. [26] noticed that recently re-
searchers have started searching for new definitions of ma-
turity in the context of agile software development. Un-
fortunately, it seems that no substantial conclusions have
been reached so far.

2.2. Assessment Approaches

The main goal of assessment approaches used with ma-
turity models is to provide feedback on the maturity of
an organization, process or project, which consequently
can stimulate the organization to take some corrective ac-
tions [40].

The kind of feedback one receives depends on the out-
puts of the assessment method being used. For instance,
some assessment methods provide output in the form of a
list or quantity of (in)sufficiently implemented practices,
e.g., Karlskrona test [43], while using other methods, such
as CMMI SCAMPISM [44], results in comprehensive re-
ports containing summaries of strengths and weaknesses
documented for each process area in the scope of assess-
ment, as well as information about the maturity level.

The maturity level is often determined with the use of
questionnaires or checklists, based on a sum of the frequen-
cies of answers to a series of Likert items or yes/no ques-
tions. This procedure originates from early approaches,
such as CMM/CMMI [27], but it also appears in the meth-
ods proposed for agile software development, e.g, Agile
Maturity Model (AMM)[14].

For instance, in AMM the assessor answers a series of
multiple choice questions (Yes, Partially, No, N/A, Don’t
know) verifying if key practices are used. The result is
a single measure that corresponds to the percentage of
sufficiently implemented practices (a ’Yes’ answer counts
as one point, and ’Partially’ counts as half a point). Based
on the measure’s value, it can be determined whether a
given level of maturity has been reached (e.g., 86% to 100%
— fully achieved). A similar mechanism was proposed in
the previously mentioned REGPG.

In REGPG, the maturity of the RE process is based
on a sum of points scored for practices in each of the three
categories: basic, intermediate, advanced. However, the
dependencies between practices are not considered. There-
fore, it is possible to achieve a higher level of maturity by
using a greater number of advanced practices without mas-
tering the basic ones; this was reported as an issue by the
REGPG authors during the method’s validation [45].

Other authors propose determining the level of matu-
rity based on the average number of points scored for the
sufficient implementation of certain practices or actions.

3

For instance, Gorschek in REPM [22] proposed determin-
ing the level of maturity based on the average of sums of
points received for each main process area.

Niazi et al. [25] in their RE Maturity Measurement
Framework (REMMF) provided a more advanced assess-
ment approach. They introduced a measurement instru-
ment built upon 3 dimensions: Approach (concerning man-
agement support), Deployment (concerning depth and con-
sistency of application) and Results (concerning depth and
consistency of positive results over time). The evaluation
of every possible practice in REMMF is represented by a
description of the situation it denotes. For instance, for
the Approach dimension equal weak (2) means “manage-
ment begins to recognize need”[25]. The quotient for each
practice is calculated as an average of the 3 scores (one for
each dimension), and afterward an average of the quotients
for all practices in the same category is calculated.

Finally, some of the existing assessment approaches can
be used to determine a maturity level that a project can
achieve. For example, Sidky’s Agile Adaptation Frame-
work (SAMI) [15] might indicate the readiness of an or-
ganization to adopt agile practices. This is based on the
identification of indicators of possible problems and im-
pediments to introducing agile practices.

3. Research methodology and solution design

The background information and discussion of prob-
lems contained in literature related to maturity assessment
in software projects justifies conducting distinct research
activities that intend to solve the identified practical prob-
lem of assessing RE maturity in agile projects.

Because the goal of our research is to create a method,
we oriented our approach towards Design Science Research
(DSR) [46], a problem-solving paradigm that focuses on
creating and evaluating artifacts and solutions for practical
purposes. In particular, we decided to follow the guidelines
provided by Wieringa [47].

According to Wieringa, there are two types of research
problems in DSR: practical problems and knowledge ques-
tions. A practical problem is one whose solution requires
an artifact which, when introduced, changes the world so
that it better contributes to the achievement of a given
goal. Meanwhile, a knowledge question is about closing
knowledge gaps about the world.

In our research approach to solve the identified prob-
lem, we systematically created an artifact—the REMMA
method, which allows assessing the maturity of RE in ag-
ile projects. In order to create the artifact, we executed a
series of engineering activities and answered several knowl-
edge questions. Finally, we plan to validate our proposal
in the field by executing what in DSR is called an empirical
cycle. The research process and the resultant architecture
of the proposed artifact are presented in Figure 1.

We began the research process by investigating the
identified problem and defining the main quality attributes

of the artifact under development that would allow for its
acceptance by practitioners.

In order to identify these attributes, we referred to
the theoretical framework of the Technology Acceptance
Model (TAM) [48]. According to TAM, the behavioral in-
tention of using a new technology is determined by its per-
ceived usefulness (PU) and perceived ease of use (PEOU).
We decided to focus on determinants of PU and PEOU
that, by definition, are not bounded to computer systems.
Therefore, among different determinants of perceived use-
fulness, we selected—job relevance, output quality, and
result demonstrability. Looking from the perspective of
perceived ease of use, we decided to focus on self-efficacy
(an individual’s belief that he or she can perform the ma-
turity assessment in his or her project), and perception
of external control, which is the degree to which an indi-
vidual believes that organizational and technical resources
exist to support the use of the artifact (e.g., management
support). Finally, the method should be cost-effective in
respect to the effort required to perform the assessment.

In the same stage of our research, we performed a liter-
ature review of approaches to improvement and maturity
assessment in software development so as to better un-
derstand the mechanisms of existing methods, as well as
to identify their advantages and disadvantages. An addi-
tional result was the development of a conceptual frame-
work for the proposed method.

One of the findings of the literature study was that the
term agile maturity is used inconsistently [26, 49]. There-
fore, we would like to state explicitly how it is going to be
understood in the context of this paper. The proposed def-
inition is based on the origins of the agile movement—the
Agile Manifesto, with its four values and twelve principles.

Definition 2. Agile maturity is the degree to which a
software development project follows the agile values and
principles defined in the Agile Manifesto.

From the agile values and principles follow agile prac-
tices, as it is a practice-led paradigm [36, 50, 51]. In the
paper, we will use the term agile practice to refer to a
practice that supports achieving at least one agile value or
principle, and does not interfere with achieving any other
agile value or principle (for the definition of practice see
Definition 1). Since agile practices answer the question of
”how we can drive the software processes to obtain agility”
[52], we formulated the following assumption:

Assumption 1. There exists a set of agile practices that,
when used in a software development project, allows the
achievement of agile maturity. This set will be referred to
as the agile maturity model.

An agile maturity model can be used to support the
prescriptive-oriented approach for improvement. Similarly
to the findings of some other authors, e.g., [23], we also be-
lieve that some prescription is required in agile software de-
velopment. In fact, agile development methods are to some

4

REMMA

OUTPUTMODEL

CF
Pj

Pi

Pk CFval1
CFval2

PCF

PRACTICES

RELATIONSHIPS

CONTEXT FACTORS

sub | CFval1

i- i+

r+

r-

ASSESSMENT
METHOD

P5.2: Write, short,
negotiable

requirements

P1.1: On-site
customer

P4.5: Cover
requirements with
acceptance test

P6.3: Keep release
length short

C1.2: Customer has a clear
vision, but is not able to

define detailed
requirements at present

C4.1: Type of budget:
fixed price

Never used

De facto standard

Never used

Neutral level: Normal use
Type: -

Neutral level:
Normal use

Neutral level: Normal use
Type: +

Type: + / -

De facto standard
Neutral level: Normal use
Type: +

Neutral level: Normal use
Type: + / -

−
+

/Influence:
Context: /

+
+

−
−

+

+−−

+

Figure 4: An example of influence and contextual assessments.

P4.2: Prepare and
maintain automatic
acceptance tests

C.X.1 The context
 in which automated

software acceptance tests
are not welcomed

P.X.1: Delegate a team
member to frequently
execute manual tests

Neutral level: Never used
Type: positive
Inverted: true

Neutral level: De facto standard
Type: negative

12 13

11

De facto standard Never usedAlternative
practice

−− − −− −

P4.2: Prepare and
maintain automatic
acceptance tests

C.X.1 The context
 in which automated

software acceptance tests
are not welcomed

P.X.1: Delegate a team
member to frequently
execute manual tests

Neutral level: Never used
Type: positive
Inverted: true

Neutral level: De facto standard
Type: negative

De facto standardAlternative
practice

Never used

Never used

De facto standard

Never used

14

15

16

Figure 5: An example Contextual Assessment for alternative prac-
tices and practices introduced by context factors. (a new context
factor ; a practice that is forbidden in a given context, but it is fre-
quently used À; a practice that was introduced as an alternative to
the forbidden practice, but it is never used Ã; it is detected that prac-
tices are used inadequately in their context Õ; the forbidden practice
is never used and the alternative practice is a de facto standard Œ;
implementation of practices perfectly fits to the context œ).

area, or the practices of a certain level of importance.

TL =
nX

i=1

Assessment(Practicei) (1)

PIP =
TL

3 ⇥ n
⇥ 100% (2)

Additional (5)

Important (11)

Critical (15)

De facto standard
Normal use

Discretionary use
Never used

All practices

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Additional (0)

Important (0)

Critical (2)

De facto standard
Normal use

Discretionary use
Never used

PA1: Customer Involvement

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Additional (1)

Important (2)

Critical (0)

De facto standard
Normal use

Discretionary use
Never used

PA2: Product Vision

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Additional (2)

Important (1)

Critical (4)

De facto standard
Normal use

Discretionary use
Never used

PA3: Knowledge sharing

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Additional (1)

Important (2)

Critical (2)

De facto standard
Normal use

Discretionary use
Never used

PA4: Acceptance Testing

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Additional (0)

Important (5)

Critical (5)

De facto standard
Normal use

Discretionary use
Never used

PA5: Requirements Elicitation, ...

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Additional (1)

Important (1)

Critical (2)

De facto standard
Normal use

Discretionary use
Never used

PA6: Planning

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Figure 6: A chart presenting exemplary results of Basic Assessment.

Where:

• n is the number of practices in the catalog (in the
case of Contextual Assessment the default catalog
is extended by practices introduced by the values of
context factors);

16

Pi Pj− i-

r+ CFval1Pk+

Basic

Influence

Contextual

1. PROBLEM INVESTIGATION
• Requirements
• Concepts
• Existing approaches, their

strong and weak points
• Problems and discussions

Literature study

2. TREATMENT DESIGN

3. TREATMENT DESIGN
& VALIDATION

4. TREATMENT DESIGN 5. TREATMENT DESIGN 6. PROTOTYPE TOOL 7. VALIDATION

Legend
Survey study Treatment design 8. DISSEMINATION

KQ1: What are the state-of-
the-art agile RE practices?

KQ2: Which identified
practices are important?

Design the model of practices

KQ3: What are the relationships
between the practices?

KQ4: Are the identified
relationships valid?

Redesign the model to
include practice relationships

KQ5: How context
factors can influence
agile RE?

Redesign the model to
include context factors

Design the assessment
method

Implement
a prototype
software application

x

x Software
development Treatment validation

• Useful?
• Easy to use?
• Cost-effective?

Figure 1: The architecture and process of designing the artifact—the REMMA method.

extent prescriptive, in the sense that they usually propose
sets of best practices to follow. Considering that, it seems
possible to think about the maturity of agile projects in
terms of how well they implement the recommended state-
of-the-art practices. Such an approach is also used in other
maturity assessment approaches, e.g., the family of CMMI
[27] methods, Agile Maturity Model (AMM) [14]. This led
us to make the following assumption:

Assumption 2. The level of agile maturity can be de-
termined as the alignment between the practices imple-
mented in a software development project and the agile
maturity model.

The term alignment might be understood as the degree
to which the practices in a project allow achieving the same
goals as those in agile practices. However, we are going
to extend this definition by taking into account several
specific characteristics of agile practices.

The first specific property of agile practices is that
they seem to be valuable to a project if implemented stan-
dalone, however the true power of agile methods seems to
lie in a synergistic combination of these practices [19, 53].
For example, using the XP practice of documenting re-
quirements as lightweight user stories without an available
customer, willing to closely collaborate with the develop-
ment team and answer questions related to the require-
ments, constitutes a visible risk to the project’s success.

Another important characteristic of agile practices is
that they are usually proposed for those projects that are
close to the ”agile sweet spot.” The result, as some authors
have observed, is that in some environments it may be
necessary to extend, drop or alter agile practices in order
to successfully adopt agile methods [54, 55].

Considering these two properties of agile practices, we
would like to propose the following extended definition of
alignment to the agile maturity model.

Definition 3. Alignment is the degree to which the prac-
tices used in a software development project (in short, the
practices) match the agile practices defined in an agile ma-
turity model; in particular, this includes:

(a) basic alignment—the degree to which the practices
allow achieving the same objectives as the agile prac-
tices prescribe;

(b) influence alignment—the degree to which synergy
between the practices is preserved as it is preserved
between agile practices;

(c) alignment to the context—the degree to which prac-
tices are appropriate for the environment in which
they are used as the agile maturity model prescribes.

The definition of alignment is reflected in the architec-
ture of the REMMA method presented in Figure 1. The

5

core component of the architecture is the REMMA model
containing a catalog of state-of-the-art agile RE practices.
In addition to agile practices, the model introduces differ-
ent kinds of relationships between the practices in order to
be able to capture the synergistic nature of agile practices.
Moreover, the model enables including information about
the project context (context factors) which, when present
(take a specific value), might cause alterations in the agile
maturity model, e.g., substitute a practice with another
if lessons learned suggest that the original one does not
fit the project context, or indicate which practices should
be followed in specific project contexts to mitigate certain
risks related to the adoption of agile methods.

Examining the alignment of the practices performed
in a software development project to the agile maturity
model makes it possible to combine the two improvement
ideas: prescriptive and problem-based. The prescriptive
approach is based on the examination of alignment with
RE agile practices which constitute our agile maturity
model (basic alignment) and investigating if synergy be-
tween the practices is preserved in the project (influence
alignment). The problem-based approach might be real-
ized by introducing gained experience as context factors
adopting the initial agile maturity model (contextual align-
ment). Thus, our proposal might be seen as a hybrid ap-
proach, based on a model of agile practices and using an
assessment mechanism to identify areas for improvement.

Having defined the aforementioned concepts and the
idea behind our method, we proceeded to design the details
of our solution in several iterations.

Our first iteration was dedicated to creating a model
of practices by answering the knowledge question What
are the state-of-art agile practices for Requirements Engi-
neering? (KQ1) Thus, we performed a literature review
to elicit agile practices, then analyzed them and proposed
the catalog of Agile RE practices. In addition, we con-
ducted a survey to determine the importance of the pro-
posed practices for agile projects (KQ2). The two steps are
described in the paper by Ochodek and Kopczyńska [56].
These resulted in a model of practices categorized accord-
ing to their impact on the success of an agile project.

In the following iteration, we extracted information
about relationships between agile practices defined in the
literature and combined it with our experience and knowl-
edge (KQ3). A list of the identified relationships was pre-
sented to agile practitioners. We asked them to state if
the proposed relationships are valid (KQ4). This step re-
fined the REMMA model, which at this stage consisted of
practices and influence relationships among them.

In the third iteration of the research process, we de-
signed the component of the model that allows model-
ing the influence of project context on the agile maturity
model. This component, by definition, is supposed to be
extended by users, based on their experience of using agile
software development methods in different environments.
However, in order to verify the proposed model, we decided
to perform a literature review and propose four exemplary

context factors.
Subsequently, we designed an assessment method for

the model and implemented a prototype software tool1 to
support usage of the method and allow for its validation
in an industrial setting.

Finally, we plan to execute an empirical cycle to vali-
date our proposal. We want to carry out an exploratory
case study in a realistic context to understand to what ex-
tent the method satisfies its requirements: is perceived as
useful (i.e., provides results that correctly reflect the cur-
rent state of implementation of RE practices in a project),
easy to use (can be used by project team), and cost-effective
(project team can afford using the method).

Ultimately, we believe that the dissemination of results
might provoke further steps of DSR, namely the implemen-
tation and evaluation of the REMMA method by practi-
tioners in various organizations.

4. The REMMA model

The REMMA model consists of three components: the
catalog of agile RE practices, relationships between prac-
tices, and context factors. In the section, we present each
of the components and discuss the steps we took to develop
all of them.

4.1. The REMMA catalog of practices
In order to create a catalog of practices to be included

in REMMA, we had to answer the knowledge question
KQ1 (what are the state-of-the-art agile RE practices?)
We decided to answer this question based on a litera-
ture review. The review resulted in 31 Agile RE prac-
tices that can grouped into the following six areas. For
details about the review refer to the paper by Ochodek
and Kopczyńska [56].

• PA1: Customer involvement

• PA2: Envisioning a product

• PA3: Knowledge sharing & communication

• PA4: Acceptance testing

• PA5: Requirements elicitation, analysis, documen-
tation, and management

• PA6: Planning

For the sake of brevity, the definitions and discussion
of 31 practices included in the REMMA practices catalog
are presented in Section Appendix A. In addition, the cat-
alog contains another outcome of the study—definitions of
minimal quality requisites for the practices.

In addition, we wanted to characterize practices ac-
cording to their importance in the context of agile soft-
ware development projects (KQ2). We assumed that the

1The tool is available on-line: http://remma.cs.put.poznan.pl

6

importance of practices might be used to value identified
problems.

Definition 4. Importance of a practice reflects its po-
tential influence on an agile project. It is expressed using
the following three-point ordinal scale:

• critical : a practice seems crucial in almost any agile
project;

• important : a practice should be used in most agile
projects;

• additional : an auxiliary practice that is recommended
to be used.

We decided to ask practitioners how do they perceived
the importance of REMMA practices for the success of ag-
ile projects. We decided to collect the opinions through
a web-based survey, which is reported in the paper by
Ochodek and Kopczyńska [56].

4.2. The REMMA relationships between practices
While performing the mapping of candidate practices

onto theories of RE and agile software development, we
noticed that studies related to agile RE frequently refer to
practices that seem more suited to other areas of software
development (e.g., project planning), or to practices that
have a visibly much broader scope than RE (e.g., com-
munication). This could be evidence that agile practices
are interdependent. For instance, it is difficult to make
a clear distinction between RE and planning activities—
they seem intertwined and synergistic. An example is that
the agile approach to planning short iterations that bring
business value would be difficult to implement if the cus-
tomer did not prioritize requirements.

In the REMMA model, we expressed this synergistic
nature of agile practices through influence relationships
between practices.

Definition 5. The existence of an influence relation-
ship between practices A and B (A i−→ B) implies that the
(insufficient) implementation of practice A can influence
(enforce or diminish) the effectiveness of the implemen-
tation of practice B. Practice A is called the affecting
practice, while practice B is the affected practice. We
distinguish three types of influence relationships:

• positive (A i+−→ B) — the proper implementation of
the affecting practice A can have a positive influence
on the affected practice B;

• negative (A i−−→ B) — the insufficient use of the
affecting practice A can have a negative influence on
the affected practice B;

• positive and negative (A i−−→ B) — the affecting
practice A can have both positive and negative in-
fluence on the affected practice B, depending on how
well the affecting practice A is implemented.

The knowledge question (KQ3) that we had to answer
at this stage was: what relationships exist between practices
in the REMMA catalog?

In order to identify the influence relationships between
the practices, we once again referred to literature study
and our experience. As a result, we defined a set of 16
candidate relationships. We decided to validate the set by
conducting a survey (KQ4).

We prepared a web-based questionnaire that consisted
of 25 items—21 items related to candidate relationships
as well as 4 demographic questions. Each item aiming to
validate a relationship had the form of a statement in-
dicating the existence of the relationship, e.g., covering
requirements with acceptance tests makes preparing auto-
matic test cases more effective. In the case of negative re-
lationships, the sentences were negated. For the positive-
negative relationships, we constructed two separate items.
Respondents were asked to express their (dis)agreement
with each item using a five-point Likert scale. Besides,
they could state that they did not know.

In order to investigate whether respondents were com-
mitted to the task, we added three additional relationships
to the survey questionnaire that we perceived as fake re-
lationships.

We administered a web-based questionnaire directly to
139 IT professionals from software development compa-
nies located in the Greater Poland district in Poland and
posted an invitation to participate in the survey on the
LinkedIn page of Poznan Agile User Group??. In response,
we received 33 filled questionnaires.

To characterize respondents, we can say that they had
worked in IT projects for at least one year (1–17 years, me-
dian 6 years), and correspondingly in agile projects for at
least half a year (0.5–14 years, median 2 years). They par-
ticipated in 1–15 agile projects (median 5). Forty-five per-
cent of respondents worked as Scrum Masters (15), forty-
eight percent of them elicited or analyzed requirements
(16), around sixty percent had experience in testing or
quality assurance (20); and seventy percent played techni-
cal roles—programming or designing software (23).

Nearly all of the respondents correctly denied the exis-
tence of fake relationships (there were 2–3 confirmations of
each fake relationship). Additionally, all but one relation-
ship were confirmed by at least 76% (25) of respondents.
Only one relationship was perceived as questionable (45%
(15) approved and 21% (7) denied the existence of this
relation, the others were not able to decide).

The descriptions of the identified influence relation-
ships between practices, and the justification of their in-
clusion to REMMA are presented in tables 1 and 2. We
tried, to the best of our ability, not to repeat information
provided in Appendix A). While discussing the identified
relationships in the tables, we will refer to the results of
this survey using the following pattern (Yes%/No%/Do
not know or hard to say%).

7

Table 1: Negative influence relationships between practices in REMMA (the neutral level column is used by the assessment method).

Affecting practice Neutral level Type Affected practice

P1.1: Available / On-site customer available normal use − P5.2: Write short, negotiable requirements

Justification: (91/0/9) Agile processes advocate for minimal documentation [57, 58, 59, 60, 10] in the form of short, negotiable requirements,
such as user stories. A visible shift is made from documentation to communication [58, 61]. Cohn [57] calls this type of lightweight requirements
a two-way promise between developers and customer. Both sides promise that they will be available and willing to discuss the details when the
time comes. If the customer is not available, it means that the agreement is broken and the team’s chances to succeed diminish.

P2.3: Define project / product constraints normal use − P5.5: Make requirements estimable

Justification: (94/3/3) The most frequently used effort estimation methods in agile projects are the expert-judgment methods [62, 63]. It is
assumed that requirements are provided in such a form that developers can understand their scope, estimate effort, and make commitments.
Project and product constraints can visibly influence the effort needed to implement a requirement [64, 65]. If they are not defined and
communicated to developers, they will not have a complete understanding of the requirements they affect. Therefore, such requirements are not
fully estimable. In addition, Beck [7] states that defining constraints make requirements clearer in respect to the cost and intended use of the
product.

P5.10: Assess implementation risks for requirements normal use − P5.5: Make requirements estimable

Justification: (76/9/15) Similarly to the constraints, being unaware of risks related to implementing a requirement increases the level of
uncertainty and makes accurate estimation more difficult. Drury-Grogan et al. [66] reported that some developers feel uncomfortable waiting
for design decisions to emerge during iteration execution, hence they prefer to discuss technical issues during iteration planning.
Risks are valuable in the context of how estimates are used for negotiating the scope of the release. Being able to incorporate risks into estimates
creates a beneficial counterpoint to prioritizing only by the means of business value [57, 67].

P4.5: Cover requirements with acceptance tests normal use − P4.2: Prepare and maintain automatic acceptance tests

Justification: (85/6/9) Acceptance tests cannot be automated if they do not exist.

P5.1: Make requirements independent normal use − P5.5: Make requirements estimable

Justification: (82/9/9) Agile approaches to planning iterations assume that the customer and developers collaboratively set the scope of iteration.
The customer prioritizes requirements while developers provide the estimates. As a result, the customer can flexibly select the most valuable
features to be implemented first. However, if requirements depended on each other, it makes estimating a cumbersome task [59, 68]. It becomes
especially difficult when the dependent requirements are not meant to be included within the scope of the iteration [53, 69].

P5.3: Make complex requirements divisible de facto standard − P5.1: Make requirements independent

Justification: (94/3/3) Decomposition of requirements is one of strategies to make requirements independent [68] (see Appendix A). Therefore,
if complex requirements are defined in such a way that they are not ready to be decomposed, then splitting them into a set of independent
requirements might be difficult.

P5.4: Requirements should be valuable to purchasers
or users

normal use − P5.8: Let customer prioritize requirements

Justification: (94/3/3) If the customer is not able to understand and assess the business value of a requirement, he or she will have problems
deciding on how important they are for the success of the project or product and when the requirements should be implemented [70, 59, 68].

P5.5: Make requirements estimable de facto standard − P6.1: Negotiate release scope with customer

Justification: (88/9/3) Agile methods advocate for achieving a mutual agreement on iteration scope between the customer and developers. It
is assumed that developers should commit themselves to implementing as many of the most important requirements as they believe is possible.
However, if requirements are non-estimable, the level of uncertainty increases and the team may make an unrealistic commitment. It is frequently
observed that developers underestimate effort in agile projects [71, 72].

P5.8: Let customer prioritize requirements normal use − P6.1: Negotiate release scope with customer

Justification: (88/6/6) Complementary to the previously discussed relationship, the customers’ role during iteration planning is to optimize the
business value of the requirements included within the scope of iteration. Therefore, if requirement priorities do not reflect customers’ point of
view, they would not be able to effectively negotiate the scope of iteration.

P5.6: Make requirements testable normal use − P4.5: Cover requirements with acceptance tests

Justification: (94/0/6) If it is impossible to define a reasonable set of acceptance criteria, it is also impossible to create acceptance test scenarios.
The problem of non-testable requirements mainly relates to non-functional requirements [59].

P5.6: Make requirements testable de facto standard − P4.3: Prepare acceptance tests before coding

Justification: (91/0/9) The justification is similar to the previous relationship. Non-testable requirements make it more difficult or even
impossible to create acceptance tests before coding.

P5.9: Define requirements using notation and language
that can easily be understood by all stakeholders

normal use − P5.4: Requirements should be valuable to purchasers
or users

Justification: (85/9/6) The agile community emphasizes the importance of communication. The communication is ineffective if one side does
not understand the language the other side uses. It is the same with the notation used to express requirements. If customers are not able to
read and understand requirements, they will not be able to assess their business value.

P5.9: Define requirements using notation and language
that can easily be understood by all stakeholders

disc. use − P5.5: Make requirements estimable

Justification: (85/9/6) There are different reasons for calling a requirement non-estimable. The main issue relates to insufficient understanding
of the requirement and the domain it belongs to [70, 59, 68, 73]. Therefore, if developers cannot understand language or notation used to express
requirements, it will create a barrier to understanding the requirements.

8

Table 2: Positive and positive-negative influence relationships between practices in REMMA (the neutral level column is used for assessment).

Affecting practice Neutral level Type Affected practice

P4.2: Prepare and maintain automatic acceptance tests normal use ± P4.4: Perform regression acceptance testing

Justification: ([-] 76/15/9; [+] 85/9/6) Similarly to the constraints, being unaware of risks related to implementing a requirement increases the
level of uncertainty and makes accurate estimation more difficult. Drury-Grogan et al. [66] reported that some developers feel uncomfortable
waiting for design decisions to emerge during iteration execution, hence they prefer to discuss technical issues during iteration planning.
Risks are valuable in the context of how estimates are used for negotiating the scope of the release. Being able to incorporate risks into estimates
creates a beneficial counterpoint to prioritizing only by the means of business value [57, 67].

P4.5: Cover requirements with acceptance tests normal use ± P5.2: Write short, negotiable requirements

Justification: ([-] 87/3/10; [+] 88/0/12) Acceptance tests cannot be automated if they do not exist.

P6.3: Keep iteration length short to continually collect
feedback

normal use + P5.2: Write short, negotiable requirements

Justification: (45/21/33) By relying on short, negotiable requirements, such as user stories, a customer can change the direction of product
development. The short iterations provide valuable input for making such changes, and support what is called iterative requirements [57, 10].
In addition, a short feedback loop is beneficial for developers who are sometimes left by their customers with unclear requirements [74]. In such
cases, short iteration cycles give them a chance to receive frequent feedback and clarification of the unclear requirements.
The relationship was confirmed by only 48 percent of the survey respondents. Although, only 29 percent of the respondents disagreed with the
existence of the relationship, it is a signal that the influence might be in question. This is also the only positive relationship. It might also be
the case that it is easier to confirm the existence of negative relationships than positive ones.

4.3. Context factors in REMMA
As we have already stated in Section 3, practices in

agile projects should be aligned with the project and or-
ganizational contexts. The REMMA model addresses this
issue by introducing the concept of context factor.

Definition 6. A context factor describes a unique prop-
erty of the environment, project or product that could have
an effect on how the team operates. The intensity of the
context factor is expressed by its values. Each context
factor has at least two values, one indicating its presence
in a project, and the other denying it.

For instance, the functional size of a product could be
considered a potential context factor in many projects. It
might have three values such as low, medium, and high.
Other example of context factor could be adherence to
Scrum Framework, with two values, yes and no.

In an agile project, the project team responds to a con-
text factor by implementing a set of (agile or non-agile)
practices. If the practices are selected and executed prop-
erly, we say that they are correctly aligned with the con-
text.

Therefore, a certain value of a context factor might
require incorporating specific practices into the process.
To address this issue, the REMMA model introduces the
concept of response relationship between a practice and
value of context factor.

Definition 7. The existence of a response relationship
between the practice P and the context-factor value CFval

(P r−→ CFval) implies that (insufficient) implementation of
the practice P can have influence on the project affected by
the context-factor value CFval. The practice P is called re-
sponse practice. We distinguish three types of response
relationships:

• positive (P r+−−→ CF val) — the proper implementa-
tion of the response practice P can have a positive in-
fluence on the project affected by the context-factor
value CFval;

• negative (P r−−−→ CF val) — the insufficient use of the
response practice P can have a negative influence
on the project affected by the context-factor value
CFval;

• positive and negative (P r±−−→ CF val) — the response
practice P can have both positive and negative in-
fluence on the project, accordingly to how well the
response practice P is implemented.

In addition, a response relationship can have an inverted
effect (P ¬r−−→ CF val). For instance, an inverted positive
response relationship between the practice P and value of
context factor CFval (P ¬r+−−−→ CF val) would imply that
the proper implementation of the practice P can have a
negative influence on the project if the context-factor value
CFval applies to the project.

As we already stated, the role of context factors is
to enable an organization or agile community to model
lessons learned regarding how to effectively operate in a
given environment. Therefore, in some cases an orga-
nization might effectively incorporate practices that are
not included in the REMMA catalog. In extreme cases,
these practices might even be perceived as not being ag-
ile. For instance, if the goal of a project is to develop a
safety-critical system, there is a justified need for prepar-
ing more comprehensive documentation [17]. As a re-
sult, in REMMA, context-factor values can introduce prac-
tices and influence relationships between practices into the
model.

9

We identified three rationales for introducing new prac-
tices or influence relationships between practices:

• to use the practice coupled with other agile RE prac-
tices in order to address context-specific issues;

• to compensate the lack / insufficient implementation
of other practices;

• to substitute for other practices that should not be
used in a given context. Substitution means that
a different practice or influence relationship should
be used instead of the substituted one. Substitution
may also be used if one would like to redefine an ex-
isting practice so that it is better suited to the con-
text (e.g., introduce more restrictive minimal quality
requisites).

Examples of how to model a) compensations and b)
substitutions in REMMA are presented in Figure 2. Com-
pensation between the practice PX Ë, introduced by the
context factor CFval Ê, and the practice P1 is modeled
using a standard influence relationship Ì. A substitution
between the practices is modeled using the substitution re-
lationship.

Definition 8. A substitution relationship between the

practices A and B (A
sub|CFval−−−−−−−→ B) is defined for a context-

factor value CFval. It implies that the practice A should
be used instead of the practice B if the context-factor value
CFval appears in the project. As a result, it implicitly
triggers the existence of an inverted, positive response re-
lationship between the practice B and CFval:

(A
sub|CFval−−−−−−−→ B ⇒ B

¬r+−−−→ CFval).

Similarly, a substitution relationship can be defined for
two influence relationships having the same affected prac-
tice (e.g., A i−→ C and B

i−→ C). Again, it is defined in the
context of a certain context-factor value. It also preserves
a similar meaning: the substituting relationship replaces
the substituted one.

A context factor in REMMA can describe a large va-
riety of situations. Some of the factors can be specific to
a given project, and thus it would be difficult to gener-
alize them to other cases (e.g., responses to the need for
cooperating with a certain customer, enhancing a certain
product). These project-specific context factors should be
modeled based on the knowledge and experience of par-
ticular organizations and project teams. Conversely, there
are some very general and commonly agreed upon context
factors, such as product size, distributed team, business
domain, etc. The responses to these factors are more likely
to be generalizable between different projects.

Therefore, taking into account a large number of pos-
sible context factors, it would be very difficult to propose
a complete model of responses to the factors at hand. For
instance, Kruchten [18] concluded that, in order to model

CFvalP1 PX
r -¬ r + 14

CFvalP1 PX
r -11 12

13

b) substitution

a) compensation

i +

P2

i - i -

15

16

17

18

19

sub | CFval

sub | CFval

Figure 2: Examples of modeling a) compensation and b) substitu-
tion of practices and influence relationships in REMMA (a value
of context factor Ê, Í; a practice introduced by the context factor
CFval Ë, Î; an influence relationship showing that the practice PX

can compensate the implementation of practice P1 Ì; a substitution
relationship between the practices PX and P1 Ð with the implicitly
implied inverted response relationship showing that the practice P1

should not be used in the context CFval Ï; an influence relation-
ship between the practices P1 and P2 Ñ, which is substituted by a
relationship between PX and P2 Ò).

all relationships between 8 context factors that he pro-
posed and most popular agile practices, he would have to
investigate over a thousand cases. Taking that into con-
sideration, we propose a tool that could be used to ex-
press such relationships, rather than trying to propose a
complete set of context factors and adequate responses to
them. However, we decided to illustrate how specific con-
text factors can be added to REMMA by modeling four
selected context factors.

We decided to select factors that seem to be very gen-
eral and applicable to many projects. The first two factors
model the need for adherence to recommendations of two
agile software development methods: XP and Scrum. The
remaining two factors are distributed teams and safety-
critical systems. The two final factors represent some ex-
treme cases for the possibility of adopting the agile meth-
ods. That is why they are sometimes given as arguments
for discussing the limitations of agile methods [75].

XP and Scrum Modeling adherence to software de-
velopment methods was based on the analysis of docu-
ments describing the methods. In the case of Scrum, we
based the model mainly on the Scrum GuideTM [8], which
defines the framework’s core elements: roles, events, arti-
facts, and rules. For XP, we could not find a singular rele-
vant and up-to-date reference point. Therefore, we decided
to base the model mainly on Beck’s book Extreme Pro-
gramming Explained: Embrace Change [7] and the book
by Stephens and Rosenberg [53] discussing weaknesses and
strong points of XP.

10

The context factors describing adherence to XP and
Scrum are presented in tables 3 and 4. Our strategy was
to first identify practices directly proposed by the methods
and make them obligatory (use negative response relation-
ship). Then, we analyzed which REMMA practices could
support implementing the methods, and based on that
we added additional response relationships to the models.
Finally, we identified the practices related to RE which
are distinct to these methods and are not included in the
REMMA catalog. As a result, we added three additional
practices to the context factor related to Scrum: product
backlog, sprint backlog, and decisive product owner. The
practices are briefly discussed in Appendix A.1.

The Global Software Development (GSD) is prob-
ably one of the most frequently investigated context fac-
tors when it comes to agile software development methods.
The reason for that is that agile methods focus on direct
face-to-face communication, which is much more difficult
when a project team is physically distributed.

In order to construct a context factor for GSD, we de-
cided to conduct a literature study to find out how agile
teams respond to problems stemming from physical distri-
bution. We based our study on two systematic literature
studies—the first by Hossain et al. [54] and the second
by Jalali and Wohlin [77]. In addition, we analyzed the
papers referred to in those studies to extract more spe-
cific insights. The resulting model of the context factor is
presented in Table 5.

From the literature study, it seems that there are three
major areas that are challenging for GSD, agile projects:
communication, knowledge management, and trust. The
main response to these challenges is to focus on maximiz-
ing the opportunities to communicate with members of dis-
tributed teams. On these grounds, it is frequently advised
to promote different types of meetings, such as daily team
meetings, iteration reviews, and retrospectives. The last
one in particular helps to build trust among the project’s
members. However, organizing such meetings might be
challenging, especially when sub-teams operate in differ-
ent time zones. Thus, it is proposed that working hours
be synchronized (or at least overlapping hours are found
between different sites). When it comes to communication
and knowledge sharing, it is important to introduce proper
tools for distant communications and knowledge manage-
ment, such as e-mails, video conferences, wikis, etc. Mul-
tiple communication modes should also be introduced in
order to increase communication bandwidth. The role of
effective communication with customers is crucial as well.
Finally, it is recommended that frequent visits of mem-
bers among different sites are organized to help to build
stronger relationships between project members and rein-
force the feeling of unity.

In the proposed context model of the agile GSD, prac-
tices related to knowledge sharing and communication were
made obligatory. In addition, three new practices were
introduced: frequent visits, synchronized work hours, and
multiple communication modes. These practices are briefly

described in Appendix A.1.
Safety-critical systems We decided to model safety-

critical systems as another example of an extreme con-
text factor in agile software development. In fact, safety-
critical systems are often given as an example of products
that might not fit well into the agile software development
methods [75, 80, 81].

We once again decided to base the model on a litera-
ture study. Unfortunately, we have not found relevant sec-
ondary studies. Therefore, we decided to perform a limited
literature review using common search engines (Google
Scholar, IEEE eXplore, ACM Digital Library) and the
backward snowballing technique. While performing the
search, we were especially interested in empirical stud-
ies and studies that investigated the conformance of ag-
ile practices with standards for developing safety-critical
systems. The results of the literature study did not pro-
vide us with sufficient evidence to allow us to model more
than two values (yes and no) of the context factor (e.g.,
different types of safety-critical systems).

As a result of the study, we identified two main con-
cerns related to agile RE in the context of developing
safety-critical systems. These are the minimalistic ap-
proach to requirements documentation and a lack of an up-
front analysis of requirements. No up-front analysis con-
stitutes a problem because the design of a safety-critical
system should be subjected to safety analysis before the
system is implemented [82, 83, 84], e.g., Safety Impact
Analysis, Functional Failure Analysis (FFA), Hazards and
operability analysis (HAZOP). An added problem is that
whenever a request for change appears, its impact on safety
has to be investigated. Hence, allowing for emerging re-
quirements might increase the costs of software develop-
ment.

There are two solutions proposed to these problems.
The first is to prepare in advance a (sufficiently) compre-
hensive requirements specification and architecture design
that will allow performing necessary safety analyses and
enable high-level planning [82, 85]. The second is to pre-
pare descriptions of requirements that are more detailed
than typical user stories during iterations (e.g., create use-
case models) [55, 86].

Another issue concerns the feasibility of short itera-
tion cycles and emerging requirements. Recently published
papers provide some empirical evidence suggesting that
short, consistent iteration cycles are beneficial for safety-
critical projects. For instance, VanderLeest and Buter [87]
reported that they were able to implement fixed weekly it-
eration cycles (avionic sector, system compliant with DO-
178B). They also reported that a fixed length of iterations
“adds consistency to the planning as well as helping to pre-
vent ’feature creep’ because once an iteration’s tasks have
been set, they should not be changed.” Similarly, Trim-
ble [88], while sharing his experience from developing The
Mission Control Technologies (MCT) in NASA, empha-
sizes the need for regular deliveries of working software
(even without incomplete requirements). In addition, he

11

Table 3: Context factor: C1. eXtreme Programming (the column neutral level is used by the assessment method).

Response practices Type Neutral level Justification

P4.1: Let customer define acceptance tests − de facto standard Test-First Programming [53, 7]
P4.2: Prepare and maintain automatic acceptance tests − de facto standard Test-First Programming [53, 7]
P4.3: Prepare acceptance tests before coding − de facto standard Test-First Programming [53, 7]
P4.5: Cover requirements with acceptance tests − de facto standard Test-First Programming [53, 7]
P5.6: Make requirements testable − de facto standard Test-First Programming [53, 7]
P3.4: Provide and maintain informative workspace − de facto standard Informative Workspace [7]
P3.5: Provide easy access to requirements − de facto standard Sit together, Informative Workspace [7]
P5.2: Write short, negotiable requirements − de facto standard Stories [7]
P5.4: Requirements should be valuable to purchasers or users − de facto standard Stories [7]
P5.5: Make requirements estimable − de facto standard Stories, Planning Game [7]
P6.4: Define a fixed iteration length − de facto standard Small releases, cycles, Sustainable pace [53, 7]
P5.8: Let customer prioritize requirements − de facto standard The Planning Game [53, 7]
P6.1: Negotiate iteration scope with customer − de facto standard The Planning Game [53, 7]
P6.3: Keep iteration length short to continually collect feedback − de facto standard Small releases, cycles [53, 7]
P5.9: Define requirements using notation and language that
can easily be understood by all stakeholders

− de facto standard Stories, Informative Workspace [7]

P5.1: Make requirements independent ± normal use Stories, The Planning Game [7]
P5.3: Make complex requirements divisible ± normal use Stories, The Planning Game [7]
P3.1: Organize everyday team meetings ± normal use Stand-up meetings, Sustainable pace [7, 76]

Table 4: Context factor: C2. Scrum (the column neutral level is used by the assessment method).

Response practices Type Neutral level Justification

P3.1: Organize everyday team meetings − de facto standard Daily Scrum [8]
P3.2: Organize review meetings − de facto standard Sprint Review [8]
P3.3: Organize retrospective meetings − de facto standard Sprint Retrospective [8]
P6.1: Negotiate iteration scope with customer − de facto standard Sprint Planning [8]
P6.2: Avoid changing increment scope after it is agreed upon − de facto standard Sprint [8]
P6.3: Keep iteration length short to continually collect feedback − de facto standard Sprint [8]
P5.8: Let customer prioritize requirements − de facto standard Product Owner [8]
P5.4: Requirements should be valuable to purchasers or users − de facto standard Product Owner, Sprint Planning [8]
P3.5: Provide easy access to requirements − de facto standard Product Owner [8]
P5.9: Define requirements using notation and language that
can easily be understood by all stakeholders

− de facto standard Product Owner [8]

P5.5: Make requirements estimable − de facto standard Product Owner [8]
P5.6: Make requirements testable − de facto standard Product Owner, understanding of ”done” [8]
P4.1: Let customer define acceptance tests − de facto standard Product Owner, understanding of ”done” [8]
P4.5: Cover requirements with acceptance tests − de facto standard Product Owner, understanding of ”done” [8]
C2.P1: Product Backlog − de facto standard Product Backlog [8]
C2.P2: Sprint Backlog − de facto standard Sprint Backlog [8]
C2.P3: Decisive Product Owner − de facto standard Product Owner [8]
P6.4: Define a fixed iteration length ± normal use Sprint [70]

P3.4: Provide and maintain informative workspace ± normal use
Product Owner, Product Backlog, Spring
Backlog, Sprint [70, 8]

P1.1: Available / On-site customer ± normal use Product Owner [70]
P1.2: Involve different stakeholders ± normal use Product Owner [70]
P5.2: Write short, negotiable requirements ± normal use Product Backlog, User stories [70]
P5.1: Make requirements independent ± normal use Product Backlog, User stories [70]
P5.3: Make complex requirements divisible ± normal use Product Backlog, User stories [70]

12

Table 5: Context factor: C3. The Global Software Development (the column neutral level is used by the assessment method).

Response practices Type Neutral level Justification

P1.1: Available / On-site customer ± de facto standard Communication, Knowledge sharing, Trust [54, 77]
P3.1: Organize everyday team meetings − de facto standard Communication, Knowledge sharing, Trust [54, 77]
P3.2: Organize review meetings − de facto standard Communication, Knowledge sharing, Trust [54, 77]
P3.3: Organize retrospective meetings − de facto standard Communication, Knowledge sharing, Trust [54, 77]
P3.4: Provide and maintain informative workspace − de facto standard Communication, Knowledge sharing [54]
P3.5: Provide easy access to requirements − de facto standard Communication, Knowledge sharing [54]
P5.9: Define requirements using notation and language
that can easily be understood by all stakeholders

− de facto standard Communication [78]

P6.3: Keep iteration length short to continually collect
feedback

± normal use Communication [79, 77]

C3.P1: Frequent visits + never used Communication, Knowledge sharing, Trust [54]
C3.P2: Synchronized work hours − de facto standard Communication, Knowledge sharing [54]
C3.P3: Multiple communication modes ± discretionary used Communication, Knowledge sharing [54]

states that although only verified safety-critical software
can be deployed in an operational environment, it does
not prevent the development team from providing incre-
ments to the customer in order to receive feedback. A
similar view on agile, iterative development was presented
by Gary et al. [89]. They emphasize the value of fre-
quently delivering working software in the context of devel-
oping safety-critical systems. They additionally reported
a successful implementation of the approach to handling
emerging requirements, using continuous verification and
prioritization of the product backlog.

When it comes to customer involvement, agile projects
developing safety-critical systems seem to be by no means
different from other agile projects. For instance, Van-
derLeest and Buter [87] reported that they were able to
achieve customer involvement on both a daily basis and
on iteration boundaries. Moreover, they emphasize the im-
portance of consistent customer involvement, including at
subcontracting levels. The possibility of having an on-site
customer in safety-critical projects was also confirmed by
Jonsson et al. [86]. Bowers [90] emphasizes that the cus-
tomer’s role is crucial in agile projects developing safety-
critical systems.

The two further findings that we made during the study
were unanimously presented in most of the analyzed pa-
pers. The first relates to the necessity of preserving trace-
ability between code, requirements and test cases, which
is imposed by safety standards [86, 89, 85]. The second
one relates to the importance that agile methods place on
testing (testable requirements, automated tests, regression
tests, acceptance tests prepared by customers) [75, 86, 87,
89, 90, 91].

Based on the presented findings, we proposed three
new practices for the context factor: prepare an up front
requirements specification that is sufficient for safety anal-
ysis, traceability, and comprehensive, negotiable require-
ments. The last practice substitutes writing short, nego-
tiable requirements. In addition, the practices related to
customer involvement, testing, and iterative development

were added to the model, as they seem to be especially
beneficial for the projects affected by this context factor.
The resulting model of the context factor is presented in
Table 6.

The presented four context factors illustrate the use of
the context-factors component of the REMMA method.
In the next section, we are going to explain how they are
used to assess practice alignment with the context.

5. Assessment of practice alignment

The assessment method in REMMA enables the ap-
praisal of practice alignment on three levels:

• Basic assessment — the alignment of a project’s
practices with the agile RE practices is assessed based
on the frequency of their appropriate usage.

• Influence assessment — the assessment of synergy
between practices is added to the basic assessment.

• Contextual assessment — influence assessment is aug-
mented with the evaluation of how appropriate the
implementation of practices is in the project with
respect to its environment.

The assessment is always performed for an agreed upon
period, which is called the time span of assessment.

Definition 9. The time span of assessment is a pe-
riod for which the assessment is performed. For practical
reasons, the time span of assessment should not be shorter
than the duration of a single iteration in a project, be-
cause the usage of some of the practices, by definition, can
be seen only once per iteration (e.g., an iteration review
meeting).

The assessment is performed by a person called the as-
sessor. The assessor handles collecting evidence regarding
the usage of practices, together with applying the rules of

13

Table 6: Context factor: C4. Safety-critical system (the column neutral level is used by the assessment method).

Response practices Type Neutral level Justification

C4.P1: Prepare an up front requirements specification that is sufficient for safety anal-
ysis

− de facto standard [82, 85]

C4.P2: Write comprehensive, negotiable requirements (substitutes P5.2) − de facto standard [55, 86].
C4.P3: Traceability − de facto standard [86, 89, 85].
P1.1: Available / On-site customer − de facto standard [87, 86, 90]
P4.1: Let customer define acceptance tests ± normal use [91]
P4.2: Prepare and maintain automatic acceptance tests − de facto standard [86, 89, 90, 91]
P4.3: Prepare acceptance tests before coding − de facto standard [75, 86, 87, 91]
P4.5: Cover requirements with acceptance tests − de facto standard [75, 86, 87, 89, 90, 91]
P5.6: Make requirements testable − de facto standard [86, 87]
P6.3: Keep iteration length short to continually collect feedback ± normal use [87, 88, 89]
P6.4: Define a fixed iteration length ± normal use [87]

the assessment method to produce and interpret its out-
comes. Steps of the assessment can be performed manually
or with the use of our prototype software tool, whose goal
is to make the application of REMMA assessment rules
less time consuming.

5.1. Basic assessment

The goal of basic assessment is to assess the basic align-
ment of practices, which according to Definition 3 is the
degree to which the practices in a software development
project make it possible to reach the same objectives as
the agile practices defined in the agile maturity model (the
agile RE practices defined in the REMMA catalog of prac-
tices).

According to the Definition 1, each practice defines its
objectives, whose achievement can be examined by inves-
tigating the output produced while using the practice. For
instance, if we consider the practice whose goal is to make
the acceptance tests automatic, then the expected output
of using the practice are automated acceptance test cases.
Therefore, to assess the practice we have to verify if such
test cases were created. Considering that, we make the
following assumption:

Assumption 3. The presence of the practice’s expected
output in a project is the evidence that the objectives of a
practice were achieved.

As presented above, the usage of a practice often results
in producing certain artifacts (e.g., acceptance test cases).
However, it is worth emphasizing that the output can have
other forms as well, e.g., it could be an event or achieving a
certain object state (e.g., the answer to a question related
to requirements, or the fact that stakeholders understand
the vision of a project).

Therefore, it is necessary to define the smallest piece
of evidence that allows verifying whether a single act of
using the practice resulted in producing its expected out-
put. To address this issue, we introduced the concept of
the practice assessment unit.

Table 7: The assessment units of practices described in the paper.

Practice Assessment unit Practice Assessment unit

P1.1
request for

requirements
clarification

P5.4 requirement

P1.2 ∅ P5.5 requirement
P2.1 ∅ P5.6 requirement

P2.2
functional

requirement
P5.7 ∅

P2.3 ∅ P5.8 requirement
P3.1 each day P5.9 requirement
P3.2 iteration P5.10 requirement
P3.3 iteration P6.1 iteration
P3.4 ∅ P6.2 iteration
P3.5 ∅ P6.3 iteration
P3.6 ∅ P6.4 ∅
P3.7 ∅ C2.P1 sprint

P4.1
acceptance
criterion

C2.P2 sprint

P4.2 acceptance test C2.P3 ∅
P4.3 requirement C3.P1 ∅

P4.4
requirement
implemented

C3.P2 ∅

P4.5 requirement C3.P3 ∅
P5.1 requirement C4.P1 ∅
P5.2 requirement C4.P2 requirement
P5.3 requirement C4.P3 requirement

Definition 10. The assessment unit of a practice is an
atomic piece of evidence that allows determining if a single
act of using the practice resulted in its expected output. A
null assessment unit (∅) is used for practices that must
always be assessed in the scope of a whole project (e.g.,
they refer to the state of a project).

The assessment units of practices described in the pa-
per are presented in Table 7.

Taking the above into consideration, in order to per-
form the basic assessment, the assessor has to examine the
available instances of the assessment units of each practice
to determine how often (frequency) its expected outputs

14

were produced (quality). The assessor does this by verify-
ing whether all of the minimal quality requisites defined for
the practice have been met by the instances of the assess-
ment unit being investigated. For example, the assessment
unit of the practice write short, negotiable requirements
(P5.2) is a requirement. Therefore, each requirement in
the project that meets all minimal quality requisites of
the practice P5.2 provides a single piece of evidence of
the practice’s correct usage. Conversely, each requirement
that does not meet all the requisites is evidence against
the correct usage of that practice.

In the case of practices with null assessment units (∅),
the assessment is always performed for the whole project.
For instance, for the practice establish project’s shared vi-
sion (P2.1), the assessor needs to verify whether the project’s
vision is established, documented, contains up-to-date in-
formation, and is understood by all stakeholders.

Considering that the time span of assessment should
cover at least the duration of a single iteration in a project
(see Definition 9), the assessor has to examine how the us-
age of a practice changed within that period (i.e., assess
the frequency of using the practice that resulted in its ex-
pected outputs).

An example of how the assessor might combine the as-
sessment of frequency and quality into a single, combined
assessment of practice is presented in Figure 3. The prac-
tice considered in sub-figure a) has a null unit of assess-
ment. As it is presented, the minimal quality criteria of
the practice were met for one and a half out of two itera-
tions covered by the time span of assessment. This allows
us to state that the practice was appropriately used 75%
of the time. The practice considered in sub-figure b) has a
specific unit of assessment; as an example, let us assume it
is acceptance test. The number of instances of the assess-
ment unit (here, the number of acceptance test cases) that
met the minimal quality criteria changed over time, from
40% during the first half of the first iteration to 80% for
the remaining period of time. When averaged over time,
this gives the final assessment of 70%.

To conclude this part, we could state that in order to
perform the basic assessment, the assessor has to collect
evidence of how often and how well each practice was used
within the agreed time span of assessment. The evidence
can be collected either by analyzing project data (e.g., for
the practice P1.1 available / on-site customer, the assessor
could analyze how the requests for requirements clarifica-
tion stored in the task management system were handled)
or by interviewing project team members. In the latter
case, interviewees are asked to reflect on how a practice
was used within a given period of time (e.g., how often
was the project vision kept up to date within the last two
increments, or what was the average percentage of require-
ments covered with acceptance test cases within the last
two iterations).

Assuming that the main method of collecting data would
be to less or more formally interview project members, we
decided to introduce a fuzzy interval scale of assessment in-

timeiteration 1 iteration 2

Min. quality criteria were met for 75% of time.

a)

timeiteration 1 iteration 2

the time span of assessment

b)

0%

100%

0%

100%

the time span of assessment

The combined assessment of the practice with a specific unit of assessment

The combined assessment of the practice with a null ∅ unit of assessment

The number of instances of assessment units that met the min.
quality criteria of the practice ranged between 40-80% within
the time span of assessment, with average over time 70%.

40%

80%

Figure 3: An example of assessing the usage of practices in time:
practices with binary a) and qualitative b) types of assessment re-
sults.

stead of forcing respondents to provide percentage values.
We believe that this makes the assessment faster and pre-
vents situations where interviewees are confused because
they do not feel confident enough to provide answers with
the demanded level of precision (in this case, we value ac-
curacy over precision).

The resulting four-point assessment scale is similar to
the one proposed by Sommerville and Sawyer [21]:

• De facto standard (level=3): a practice is commonly
agreed upon in a project and used appropriately for
no less than 75% of time.

• Normal use (level=2): a practice is commonly agreed
upon in a project and is used appropriately for no less
than 50% of time.

• Discretionary use (level=1): a practice is not com-
monly agreed upon and is occasionally used appro-
priately in a project (for no less than 25% of time).

• Never used (level=0): a practice is hardly ever used
appropriately in a project (for less than 25% of time).

Depending on the information needs, the results of the
basic assessment can be reported in various forms. How-
ever, after Sommerville and Ranson [45], we propose pre-
senting the coverage of the practices visually relative to
their importance. A similar analysis can be performed for
each of the RE areas. An example of analysis results is
presented in Figure 4. It indicates that most of the criti-
cal practices were frequently used (80% of critical practices
are at least normally used). However, it also reveals that
all of the neglected critical practices belong to the area of
release planning.

15

Additional (2)

Important (19)

Critical (10)

De facto standard
Normal use

Discretionary use
Never used

All practices

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Additional (0)

Important (1)

Critical (1)

De facto standard
Normal use

Discretionary use
Never used

PA1: Customer Involvement

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Additional (0)

Important (2)

Critical (1)

De facto standard
Normal use

Discretionary use
Never used

PA2: Product Vision

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Additional (1)

Important (4)

Critical (2)

De facto standard
Normal use

Discretionary use
Never used

PA3: Knowledge sharing

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Additional (1)

Important (4)

Critical (0)

De facto standard
Normal use

Discretionary use
Never used

PA4: Acceptance Testing

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Additional (0)

Important (5)

Critical (5)

De facto standard
Normal use

Discretionary use
Never used

PA5: Requirements Elicitation, Analysis and ...

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Additional (0)

Important (3)

Critical (1)

De facto standard
Normal use

Discretionary use
Never used

PA6: Planning

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Figure 4: A chart presenting exemplary results of basic assessment.

In addition to providing visual presentation of the as-
sessment results, we propose calculating two simple mea-
sures: percentage of practice implementation (PIP), and
total number of levels (TL) according to equations 1 and
2. The TL measure represents the total number of assess-
ment levels obtained for all practices. It therefore depends
on the number of practices considered in the assessment.
Both measures can be calculated for the entire catalog of
practices, the practices belonging to a certain area, or the
practices of a certain level of importance.

TL =

n∑

i=1

Assessment(Practicei) (1)

PIP =
TL
3× n

× 100% (2)

Where:

• n is the number of practices in the catalog (in the
case of contextual assessment discussed in Section
5.3, the default catalog is extended by practices in-
troduced by the values of context factors);

• Assessment(Practicei) gives the number of imple-
mentation levels for the practice Practicei obtained

during the assessment {never used = 0; discretionary
use = 1; normal use = 2; de facto standard = 3}.

5.2. Influence assessment

The goal of influence assessment is to evaluate the de-
gree to which synergy between the practices in a project
is preserved. It is performed on top of basic assessment
results.

Before we proceed to describe the procedure of per-
forming the influence assessment, let us first introduce the
concept of the neutral level of a relationship.

Definition 11. Neutral level is defined for an influence
and response relationship. It indicates the point at which
the affecting practice does not have any meaningful influ-
ence on the affected practice or context-factor value. De-
pending on the relationship type (positive, negative, positive-
negative), if the assessed level is greater or lesser than the
neutral level, the relationship becomes meaningful for the
project and contributes to the results of influence or con-
textual assessment.

The assessors perform the influence assessment accord-
ing to the steps of Algorithm 1. The algorithm consists of
three stages. The goal of the first stage is to initialize
variables (lines 1–5). In the second stage, all influence
relationships are investigated (lines 6–14). Firstly, the in-
fluence level of a relationship is calculated by comparing
the basic assessment level of the affecting practice and the
neutral level defined for the relationship. Then, in the
line 10, it is checked whether the relationship is triggered,
based on the previously calculated influence level and the
type of relationship. If the relationship is triggered, the
influence is stored as the number of minus or plus signs
equal to the influence level of relationship. The goal of the
third stage of the algorithm (lines 15–23) is to calculate the
results of the assessment for each practice as the sum of
all influence levels and the basic assessment. Additionally,
the information about the triggered relationship is stored
to enable the traceability of relationships contributing to
the influence assessment and the practice.

An example of analyzing the results of an influence
assessment from the perspective of a single practice is
presented in Figure 5. It demonstrates a project team
claiming that they almost always correctly use (de facto
standard) the practice write short, negotiable requirements
(P5.2). From the perspective of basic assessment, this indi-
cates the highest possible alignment with the state-of-the-
art agile RE practice. Unfortunately, this assessment may
not show the entire truth, as it is apparent that the team
does not pay enough attention to getting the customer’s
representative involved in clarifying requirements, which
limits the strength of practice P5.2. Fortunately, the team
tries to mitigate the problem of low customer availability
by incorporating other practices. They predominantly pay
attention to defining acceptance tests for the requirements

16

Data:
P — a set of REMMA practices;
IR — a set of REMMA influence relationships;
p.basic assessment — the result of basic assessment
(number of levels) for the practice p;
rel.neutral level — neutral level defined for the
influence relationship rel;
Result:
p.influence in — a set of tuples (lvl, rel) such that lvl
is the level of influence another practice has on the
practice p, triggered by the relationship rel;
p.influence out — a set of tuples (lvl, rel) such that lvl
is the level of influence the practice p has on some other
practice, triggered by the relationship rel;
p.total influence in — is the sum of all influence levels
the other practices have on the practice p;
p.total influence out — is the sum of all influence levels
the practice p has on the other practices;
p.influence assessment — is the influence assessment
of the practice p including the basic assessment and the
sum of all influence levels the other practices have on
the practice p;

1 foreach p ∈ P do
2 p.influence in ← {};
3 p.influence out ← {};
4 p.total influence in ← 0;
5 p.total influence out ← 0;

6 foreach rel: a
i type−−−−→ b ∈ IR do

7 lvl ← a.basic assessment− rel.neutral level;
8 if (lvl < 0 and type =’−’)
9 or (lvl > 0 and type =’+’)
10 or type =’±’ then
11 b.influence in ←
12 b.influence in ∪ {(lvl, rel)};
13 a.influence out ←
14 a.influence out ∪ {(lvl, rel)};

15 foreach p ∈ P do
16 foreach in ∈ p.influence in do
17 p.total influence in ←
18 p.total influence in + in[0];

19 foreach out ∈ p.influence out do
20 p.total influence out ←
21 p.total influence out + out[0];

22 p.influence assessment ←
23 p.basic assessment + p.total influence in;

Algorithm 1: Algorithm of conducting influence assess-
ment for all practices.

(de facto standard). It might help to clarify imprecise re-
quirements. Another way of dealing with a lack of on-site
customer presence is to minimize the release length, so as
to increase the chance of receiving feedback. However, it
seems that the team did not seize this opportunity. To
summarize, the presented analysis shows that the imple-
mentation of practice P5.2 is exposed to an important risk
related to low customer availability, and thus the team’s
claim about the perfect usage of the practice seems overop-

timistic.
If the results of influence assessment are interpreted in

the form of a causal analysis as presented above, each of
the triggered influence relationships provides some feed-
back about the alignment of practices. That is why we
need to preserve traceability between the results (influence
levels) and relationships.

Another way of interpreting the result is to calculate
the aggregated influence assessment for a practice as it is
presented in line 23 of Algorithm 1. The aggregated assess-
ment result enables calculating the previously introduced
TL and PIP measures at the level of influence assessment.
For example, for the case presented in Figure 5, the final
influence assessment of practice P5.2 would be equal to 3
(basic assessment) – 2 + 1.

Finally, the analysis of triggered relationships might
help to find practices that we call negative influencers.
These are those practices that are used insufficiently, and
as a result have a negative influence on other practices.
These practices can be found by analyzing the triggered
relationships in which the practice appears as affecting
practice, and the influence result is negative.

5.3. Contextual assessment

The goal of contextual assessment is to investigate whether
practices are aligned with the context. As it was stated
in Section 4.3, the context is described by a set of context
factors. A context factor corresponds to a single feature
of the environment, e.g., recommendations for a software
development methodology, characteristics of the customer,
application type, etc. It is assumed that the set of context
factors should reflect the lessons learned by a team or or-
ganization. Therefore, it might be very specific to a given
team or organization.

The first step of contextual assessment is to describe
the environment by selecting appropriate context factor
values. Once those values are selected, the assessor per-
forms the contextual assessment according to the steps of
Algorithm 2.

The algorithm requires, as the first step, that basic
and influence assessments are performed for any new prac-
tices and influence relationships introduced by the context-
factors model (lines 1–2). In the second step, the variables
are initialized (lines 3–5 and line 7). In the third step,
all context-factor values characterizing project are investi-
gated by analyzing how the practices implemented in the
project respond to the context-factor value (lines 6–19).
This is done by calculating the response level of the re-
lationship by comparing the level of basic assessment of
the practice with the neutral level defined for the relation-
ship. Then, in the line 13, the triggering conditions are
checked for the relationship. If the relationship is trig-
gered, the influence is stored as the number of minus or
plus signs equal to response level of the relationship. It
is worth mentioning that for inverted relationships the re-
sponse level is multiplied by minus one. The goal of the

17

P5.2: Write, short,
negotiable

requirements

P1.1: Available /
on-site customer

P4.5: Cover
requirements with
acceptance test

P6.3: Keep release
length short

C4.1: Safety-critical
system

Never used

De facto standard

Never used

Neutral level: normal use
Type: -

Neutral level:
normal use

Neutral level: normal use
Type: +

Type:

De facto standard Neutral level: never used
Type: inverted +

− /Influence:
Context: /

+−

−−

+

±

−

−− −

−− −

/−− − − − +

Figure 5: An example of influence and contextual assessments.

final stage of the algorithm (lines 20–26) is to calculate the
results of the assessment for each practice as the sum of
all response levels and its influence assessment. Addition-
ally, information about triggered relationships is stored to
enable the traceability of relationships contributing to the
contextual assessment.

Let us now go back to the example presented in Fig-
ure 5 to illustrate how the results of contextual assess-
ment enhance the results of influence assessment. Based
on the results of influence assessment, we have already
observed that the practice write short, negotiable require-
ments (P5.2) is claimed to be correctly used by the project
team (de facto standard), however there is a visible threat
to its usage in the form of a poorly cooperating customer
representative. Let us now extend the assessment by in-
cluding a context-factor value that appeared in the project,
stating that the project aims to develop a safety-critical
system.

The context factor value substituted practice P5.2 with
the more restrictive practice write comprehensive, nego-
tiable requirements (C4.P2). As a result, the inverted,
positive response relationship introduced by the context-
factor value was triggered and resulted in a negative con-
textual assessment of practice 5.2. The conclusion from
the analysis of this case is that the team should consider
introducing more comprehensive requirement documenta-
tion. Firstly, it seems that they are unable to encourage
the customer to cooperate closely, and secondly, they are
developing a safety-critical system.

Similarly to the influence assessment, the result of the
contextual assessment of a practice can also be aggregated
to a single number (see line 26 of Algorithm 2). The aggre-
gated assessment result enables calculating the previously
introduced TL and PIP measures at the level of contextual
assessment. For example, for the case presented in Fig-
ure 5, the final influence assessment of the practice P5.2
would be equal to 2 (influence assessment) – 3 + 0.

Finally, influence and contextual assessments help to
identify one more anomaly in the implementation of prac-

tices. We call it a false-positive practice. This is a practice
that was indicated as correctly and frequently used dur-
ing basic assessment, but is either unsupported by other
related practices or remains ill-fitted to the context (i.e.,
received a large number of ‘−‘ signs as a result of influence
and contextual assessments).

6. Related Work

In this section, we would like to complement the con-
ceptual framework of maturity models and assessment meth-
ods presented in Section 2 by focusing on assessing the ma-
turity of Requirements Engineering. We would also like to
discuss how these methods relate to our work.

The simplest approach to probe and assess agile soft-
ware development processes is to use one of the available
checklists (e.g., [92]) or simple, survey-based tests (e.g.,
Karlskrona test [43]). The advantage of such approaches
is that they are easy and cost-effective to apply. Unfortu-
nately, when looking from the perspective of assessing the
maturity of RE process, they seem over-simplified and too
general. We use elements of checklist-based assessment in
REMMA primarily to evaluate the fulfillment of the min-
imal quality requisites of practices.

When considering maturity assessment and improve-
ment methods in the area of RE, the REGPG framework
proposed by Sommerville and Sawyer [21] seemed to be
one of the most recognized approaches. It is a frame-
work dedicated to assessing the maturity of traditional
RE. Therefore, it is not entirely suitable for assessing the
agile RE process [93]. In REMMA, we use the practices-
assessment scale proposed by REGPG (de facto standard,
normal use, discretionary use, never used). However, we
decided to provide more specific definitions of its items to
ensure that it could be treated as an interval scale (see
Section 5.1 for details).

Having had some experience with applying REGPG,
Niazi et al. [25] proposed the RE Maturity Measurement
Framework (REMMF). They built their framework upon

18

Data:
PC — a set of practices introduced by the
context-factors model;
P ′ — a set containing all practices, i.e., introduced by
REMMA and context-factors models;
IRC — a set of influence relationships introduced by the
context-factors model;
RR — a set containing response relationships
introduced by the context-factors model;
C — a set containing context-factors values that
appeared in the project under assessment;
p.basic assessment — the result of basic assessment
(number of levels) for the practice p;
p.influence assessment — the result of influence
assessment (number of levels) for the practice p;
rel.neutral level — neutral level defined for the
response relationship rel;
Result:
p.context responses — a set containing tuples (lvl, rel)
such that lvl is the level of response the practice p had
on a context-factor value, triggered by the response
relationship rel;
p.total context responses — is the sum of all response
levels the practice p has on context-factor values;
ctx value.responses — a set containing tuples (lvl, rel)
such that lvl is the level of response a practice had on
the context-factor value ctx value, triggered by the
response relationship rel;
p.context assessment — is the contextual assessment of
the practice p;

1 perform basic assessment for all practices in PC ;
2 perform influence assessment (Algorithm 1) for the

practices in P ′ and influence relationships in IRC ;
3 foreach p ∈ P’ do
4 p.context responses ← {};
5 p.total context responses ← 0;

6 foreach ctx value ∈ C do
7 ctx value.responses ← {};
8 foreach rel: a

inv r type−−−−−−−→ ctx value ∈ RR do
9 lvl ← a.basic assessment
10 − rel.neutral level;
11 if (lvl < 0 and type =’−’)
12 or (lvl > 0 and type =’+’)
13 or type =’±’ then
14 if inv = True then
15 lvl ← −lvl;
16 a.context responses ←
17 a.context responses ∪ {(lvl, rel)};
18 ctx value.responses ←
19 ctx value.responses ∪ {(lvl, rel)};

20 foreach p ∈ P’ do
21 foreach resp ∈ p.context responses do
22 p.total context responses ←
23 p.total context responses + resp[0];

24 p.context assessment ←
25 p.influence assessment
26 + p.total context responses;

Algorithm 2: Algorithm of performing contextual as-
sessment for all practices.

REGPG’s strong point—a well-defined set of practices,
and tried to overcome its weaknesses, e.g., one-dimensional
evaluation, lack of indicators for practice evaluation. To
address these issues, they proposed a new multi-criterion
measurement instrument (see Section 2.2). An evaluation
in two organizations demonstrated that it was considered
effective in assessing the maturity level as well as identi-
fying weak and strong RE practices. Finally, the authors
of this method concluded that REMMF is general enough
to be applied in various types of organizations. However,
considering that the method was created to assess tradi-
tional RE, its applicability to appraising agile RE seems
doubtful.

In order to make one of the most popular Software Pro-
cess Improvement frameworks—the CMM family—focused
on RE, R-CMM [94] was proposed. The main goal was to
introduce a mechanism that could support organizations
in selecting appropriate strategies for implementing their
RE processes. To achieve their objectives, the authors
modified the GQM (Goal-Question-Metric) notation into
the Goal-Question-Practice format (GQP). They claimed
that introducing GQP made it possible to provide an ex-
plicit rationale and explanation for using a specific set of
practices. Later, the model was adapted to CMMI. As a
result, a new R-CMMI model was presented [95], which
further evolved into the REPAIM [96] model. The latest
version, which resigned from the GQP format in favor of
the goals’ definition notation used in CMMI, was validated
by a panel of experts.

Another idea for constructing a maturity model for RE
was proposed by Gorschek [22]. In his REPM model, he in-
troduced the concept of actions (activity) in place of prac-
tices. He also suggested presenting the results in tables
and line graph charts summarizing the number of actions
(total, completed, inappropriate), as well as in natural lan-
guage descriptions. We decided to follow these guidelines
in REMMA and propose aggregating assessment results as
numerical indicators (i.e., TL and PIP), graph charts (e.g.,
Figure 4), and descriptive causal analyses of relationships
between practices and context factors.

From the REMMA perspective, the approaches de-
pending mainly on assessing the implementation of prac-
tices, such as CMMI [27] or the Agile Maturity Model
(AMM) [14], are capable of performing assessment at the
basic assessment level. As a result, obtaining highly pos-
itive assessment results could lead to a false-positive con-
viction about the maturity of agile RE process, because
these methods do not consider the needs of adapting to
the environment and preserving the synergistic nature of
agile practices.

Despite this limitation, the aforementioned approaches
are still valuable sources of information with respect to
practices applied generally in Software Engineering (e.g.,
CMMI [27]), important for RE specifically (e.g., REPM [22],
REPAIM [96], REMMF [25]) and agile software develop-
ment (e.g., SAMI [15], AMM[14]).

19

7. Conclusions

In the paper, we proposed a method called REMMA
that allows assessing the maturity of Requirements Engi-
neering in agile projects based on the concept of align-
ment between practices. We call the approach a hybrid
because it combines elements known from prescriptive and
problem-oriented approaches to process improvement.

We developed the method based on the literature con-
cerning agile software development and opinions of IT pro-
fessionals. The resulting REMMA method consists of two
main components: the maturity model consisting of state-
of-the-art agile RE practices, relationships between prac-
tices, and context factors; and the assessment method. The
assessment method allows appraising the implementation
of practices also from the perspective of their appropriate-
ness for the context of a project.

Appendix A. Practices catalog

In the appendix, we present the default catalog of Agile
RE practices in Table A.8.

Appendix A.1. Context-specific practices
In the appendix we present the practices introduced by the context

factors described in Section 4.3.

C2: Scrum

C2.P1: Product Backlog (Critical) (PA5)
Product backlog is one of the artifacts defined by Scrum Framework.

It is “an ordered list of everything that might be needed in the product
and is the single source of requirements for any changes to be made to
the product. “ [8]

The role responsible for managing product backlog is product owner.
He or she is responsible for managing content of product backlog, mak-
ing it available to the stakeholders, and order backlog items according
to their importance. This work is done continuously because product
backlog constantly evolves during the project.

Attributes of a properly managed product backlog might be sum-
marized using the acronym DEEP proposed by Pichler [120]: Detailed
appropriately, Estimated, Emergent, and Prioritized.

Minimal quality requisites:

• backlog items that will be done soon are sufficiently well described
so that they can be implemented in the coming sprint,

• backlog items are estimated,

• backlog is refined at least once a sprint (items are added, removed
or reprioritized as needed),

• backlog items are sorted with the most important (valuable) items
at the top and the least important at the bottom.

C2.P2: Sprint Backlog (Critical) (PA6)
Sprint backlog is “the set of product backlog items selected for the

sprint, plus a plan for delivering the product Increment and realizing
the sprint goal. “ [8] It is a tool supporting planning and monitoring
progress created during sprint planning that is owned by the development
team.

Minimal quality requisites:

• backlog is created as a result of spring planning session,

• backlog is updated at least once a day to show current progress
of a sprint.

C2.P3: Decisive Product Owner (Critical) (PA1)
Product owner is “the sole person responsible for managing the

Product Backlog.“ [8] Among these management responsibilities the most
important one is to optimize the value of the work that Development
Team performs.

By introducing the role of product owner, Scrum tries to mitigate
the problems related to making decisions and taking responsibility for
actions when there are many stakeholders in a project. That it is why
product owner is one person, not a committee, and to work effectively he
or she needs to be made accountable for making decisions regarding the
product development.

Minimal quality requisites:

• the role of product owner is assigned to a single person,

• the person is accountable for making decisions regarding the prod-
uct development.

C3: The Global Software Development

C3.P1: Frequent visits (Important) (PA3)
Agile methods advocate for relying on face-to-face communication

and building self-organizing teams. Achieving both of these qualities
might be difficult when a project team is distributed between different lo-
cations. Therefore, it is recommended to promote visits of team members
to help them build trust, personal relationships and better understand
the vision of a product [54].

Minimal quality requisites:

• cross-location visits are organized with such frequency that they
enable to build trust among team members and help them estab-
lish a single understanding of product vision (a certain frequency
might depend on cultural differences, offshore/inshore develop-
ment, etc.).

C3.P2: Synchronized work hours (Important) (PA3)
Taking into account that a distributed team may have different work-

ing hours between the different locations, it is recommended to establish
a time-window in which all team members are available, and direct com-
munication is possible [54].

Minimal quality requisites:

• a common time-window is agreed when all team members should
be available and can directly communicate,

• all team members are available within the agreed time window.

C3.P3: Multiple communication modes (Additional) (PA3)
The practice ensures that a project team with distributed project

stakeholders is supported with different options of communication tools,
e.g., phone, web camera, teleconference, video conference, web confer-
ence, net meeting, email, shared mailing list, Instant Message (IM), Short
Message Service (SMS), or Internet chat [54].

Minimal quality requisites:

• at least two alternative communication modes are available for
project stakeholders.

C4. Safety-critical system

C4.P1: Prepare up front a requirements specification that is suf-
ficient for safety analysis (Important) (PA5)

An up-front analysis of a problem should be performed to identify the
requirements related to reliability and safety, as well as key requirements
that could potentially affect the safety and reliability characteristics of
the system. The prospered requirements specification should be sufficient
to propose an architecture of a system and perform required safety analy-
ses [82, 83, 84], e.g., Safety Impact Analysis, Functional Failure Analysis
(FFA), Hazards and operability analysis (HAZOP).

Minimal quality requisites:

• an up-front analysis of requirements has been performed that is
sufficient to prepare for required safety analyses.

20

Table A.8: Agile RE Practices with their descriptions.

ID Description with references to sources

P01 Available / On-site customer. The customer/user is available and able to answer questions regarding requirements in such a way
that the response time does not negatively impact the work of the development team (in particular, works on-site with developers)
[97, 26, 98, 53, 7, 99, 100, 101, 102, 103, 104].

P02 Involve different stakeholders. The stakeholders in the project are identified and have their roles and responsibilities defined. The
analysis of requirements is performed by taking into account similarities (overlaps), inconsistencies and contradictions between different
stakeholders’ viewpoints, functional areas, and quality expectations [103, 104, 105, 67, 106, 70].

P03 Establish project’s shared vision. The problem to be solved (goal of the project) and the proposed solution are well defined and kept
up-to-date[98, 107, 70, 108, 109, 110].

P04 Create prototypes to better understand requirements. A prototype is created for functional requirements (e.g., wireframes, mockup,
storyboard, etc.). The customer validates the created prototypes and provides feedback[97, 11, 107, 111, 112, 113, 59].

P05 Define project / product constraints. Project and product constraints are defined and kept up-to-date[106, 70].
P06 Organize everyday team meetings. The team discusses the progress, evaluate the feasibility of iteration, plan and adjust the plan (if

it is required) (e.g., each team member states what he/she was able to accomplish on the previous day, what he/she is going to work on
that day and informs about impediments)[98, 107, 114, 8].

P07 Organize review meetings. A meeting is conducted after an iteration during which the team presents its goal/scope, the work completed,
the key decisions and a demo of the completed work. The feedback from stakeholders shall be received[97, 11, 26, 98, 107, 8].

P08 Organize retrospective meetings. After each finished iteration, a meeting is organized to discuss all issues that appeared during the
iteration and to define improvement actions[97, 98, 107, 8].

P09 Provide and maintain informative workspace. Along with face-to-face communication, team members have constant access (either
in the workplace or through a software system) to information such as project status. e.g., a burndown chart, completed tasks, currently
developed tasks, awaiting tasks, requirements, reference materials such as law regulations, business documents etc.[115, 98, 58].

P10 Provide easy access to requirements. The requirements are stored in a place agreed upon by all project stakeholders, e.g., in a software
system, that allows easy access for the development team, customer, and all authorized stakeholders.[116].

P11 Maintain information about ’bad smells’ and best practices related to requirements. The information about problems related
to defects (or misunderstandings) in requirements and to requirement process (elicitation, analysis, documentation, verification) and their
impact on a project is stored, kept up-to-date and available to team members [59, 117].

P12 Perform the ’elevator test’. All team members are able to pass the ’elevator test’, i.e., to explain the idea of a product in the time it
takes to ride up in an elevator[118, 119, 120, 121].

P13 Let customer define acceptance tests. Acceptance criteria and the corresponding acceptance test scenarios are defined by the customer,
or at least the customer accepts them[97, 7, 70, 59, 122, 123, 124, 125].

P14 Prepare and maintain automatic acceptance tests. An automatic version of each acceptance test is implemented and kept up-to-
date[97, 7, 70, 59, 58, 122, 123].

P15 Prepare acceptance tests before coding. Acceptance criteria and acceptance tests for each requirement are defined before a requirement
is included into the scope of the iteration [97, 11, 26, 107, 114, 126, 127, 128, 129, 130].

P16 Perform regression acceptance testing. Acceptance tests for previously implemented functions are executed in the following iteration
to verify if they are still meeting requirements [107, 131, 132].

P17 Cover requirements with acceptance tests. Acceptance criteria and acceptance test scenarios are defined for requirements (including
non-functional requirements)[97, 70, 59].

P18 Make requirements independent. The requirements identified as dependent are grouped together into one or more independent
requirements [97, 11, 26, 133, 68].

P19 Write short, negotiable requirements. Each requirement’s description includes the most important information from the user’s
perspective, any additional information (extra precision) is separated — attached to the core requirement as annotations [97, 11, 26, 133,
70, 59, 68].

P20 Make complex requirements divisible. All sub-requirements of a compound requirement are identified in order to ease its decom-
position, and the requirements identified as difficult to implement are augmented with the description of issues, concerns to help the
development team extract some spike solution tasks [97, 11, 26, 101, 59, 68, 79].

P21 Requirements should be valuable to purchasers or users. Each requirement is defined by the customer or at least the customer
accepts the requirement proposed by the development team [97, 11, 26, 133, 134].

P22 Make requirements estimable. Size of each requirement is small enough to enable its effort estimation by the development team, and
the domain vocabulary used for its description is clear to them [97, 26, 11, 59].

P23 Make requirements testable. It is possible to verify that the software meets the acceptance criteria in a reasonable time and using a
reasonable amount of resources [97, 11, 26, 133, 59].

P24 Follow the user role modeling approach. An identification of the user roles is performed (e.g., brainstorming session), the dependencies
between user roles and user classes are identified, and attributes, properties of each user role and associated user classes are defined (e.g.,
the frequency of system usage by user class members; users’ level of expertise in domain) [59, 135, 136].

P25 Let customer prioritize requirements. The priority of each requirement is provided by the customer or at least accepted by him
[97, 26, 107, 8, 68].

P26 Define requirements using notation and language that can easily be understood by all stakeholders. The notation used to
document a requirement can easily be understood by all stakeholders [97, 53, 36, 81, 137, 138].

P27 Assess implementation risks for requirements. The implementation risks of each requirement are analyzed and documented [97, 11,
58].

P28 Negotiate iteration scope with customer. The scope of each iteration is negotiated between the customer and the development team
until a consensus is achieved. The customer understands justifications for estimates of requirements included in the scope of the iteration
and the development team understands the business rationale behind these requirements [97, 26, 107].

P29 Avoid changing increment scope after it is agreed upon. The scope of each iteration does not get changed after it has been started
unless there is a mutual agreement between the development team and the customer (the scope is renegotiated) [97, 70, 8].

P30 Keep iteration length short to continually collect feedback. The length of iteration is no longer than 4 weeks [97, 11, 107, 70, 8, 79].
P31 Define a fixed iteration length. The length of each iteration is defined, justified, and does not change (excluding external causes like

national holidays, etc.) [97, 70, 68].
21

C4.P2: Write comprehensive, negotiable requirements (Impor-
tant) (PA5)

In some cases, writing user stories might be insufficient to document
requirements for safety-critical systems. Therefore, it is recommended to
use more detailed techniques (e.g., use cases) whenever it seems rational
[55, 86].

Minimal quality requisites:

• functional requirements that seem important from the perspective
of meeting safety and reliability requirements are analyzed and
documented,

• non-functional requirements are analyzed and documented.

C4.P3: Traceability (Important) (PA5)
It is required for projects aiming at the development of a safety-

critical system to preserve traceability between code, requirements, and
test cases [86, 89, 85].

Minimal quality requisites:

• traceability between each requirement and its implementation is
preserved,

• traceability between each requirement and its test cases is pre-
served.

References

[1] D. Damian, D. Zowghi, L. Vaidyanathasamy, Y. Pal, An In-
dustrial Case Study of Immediate Benefits of Requirements
Engineering Process Improvement at the Australian Center for
Unisys Software, Empirical Software Engineering 9 (1) (2004)
45–75.

[2] J. G. Brodman, D. L. Johnson, Return on Investment (ROI)
from Software Process Improvement as Measured by US Indus-
try, Software Process: Improvement and Practice 1 (1) (1995)
35–47.

[3] L. May, Major Causes of Software Project Failures, CrossTalk–
The Journal of Defense Software Engineering 11 (7) (1998)
9–12.

[4] R. N. Charette, Why software fails, IEEE spectrum 42 (9)
(2005) 36.

[5] J. Verner, K. Cox, S. Bleistein, N. Cerpa, Requirements En-
gineering and Software Project Success: an industrial survey
in Australia and the US, Australasian Journal of Information
Systems 13 (1).

[6] L. A. Kappelman, R. McKeeman, L. Zhang, Early warning
signs of it project failure: The dominant dozen, Information
systems management 23 (4) (2006) 31–36.

[7] K. Beck, C. Andres, Extreme Programming Explained: Em-
brace Change, Addison-Wesley Professional, 2000.

[8] K. Schwaber, J. Sutherland, The Scrum GuideTM. The Defini-
tive Guide to Scrum: The Rules of the Game. Scrum.org
(2013).

[9] A. Cockburn, Crystal clear: a human-powered methodology
for small teams, Pearson Education, 2004.

[10] L. Cao, B. Ramesh, Agile requirements engineering practices:
An empirical study, Software, IEEE 25 (1) (2008) 60–67.

[11] H. Elshandidy, S. Mazen, Agile and traditional requirements
engineering: A survey, International Journal of Scientific &
Engineering Research 9.

[12] S. Adikari, C. McDonald, J. Campbell, Little design up-front:
a design science approach to integrating usability into agile re-
quirements engineering, in: Human-computer interaction. New
trends, Springer, 2009, pp. 549–558.

[13] K. Beck, et.al, The Agile Manifesto. http://agilemanifesto.
org, last access 28/08/2015.

[14] C. Patel, M. Ramachandran, Agile maturity model (amm):
A software process improvement framework for agile software
development practices, Int. J. of Software Engineering, IJSE
2 (1) (2009) 3–28.

[15] A. Sidky, A Structured Approach to Adopting Agile Practices:
The Agile Adoption Framework, Ph.D. thesis, Virginia Poly-
technic Institute and State University (2007).

[16] D. J. Reifer, F. Maurer, H. Erdogmus, Scaling agile methods,
Software, IEEE 20 (4) (2003) 12–14.

[17] R. Hoda, P. Kruchten, J. Noble, S. Marshall, Agility in con-
text, in: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’10, ACM, New York, NY, USA, 2010, pp.
74–88.

[18] P. Kruchten, Contextualizing agile software development,
Journal of Software: Evolution and Process 25 (4) (2013) 351–
361.

[19] F. Grossman, J. Bergin, D. Leip, S. Merritt, O. Gotel, One
xp experience: introducing agile (xp) software development
into a culture that is willing but not ready, in: Proceedings
of the 2004 conference of the Centre for Advanced Studies on
Collaborative research, IBM Press, 2004, pp. 242–254.

[20] N. P. Napier, L. Mathiassen, R. D. Johnson, Combining per-
ceptions and prescriptions in requirements engineering process
assessment: An industrial case study, IEEE Transactions on
Software Engineering 35 (5) (2009) 593–606.

[21] I. Sommerville, P. Sawyer, Requirements engineering: a good
practice guide, John Wiley & Sons, Inc., 1997.

[22] T. Gorschek, A method for assessing requirements engineering
process maturity in software projects, Ph.D. thesis, Depart-
ment of Software Engineering and Computer Science Blekinge
Institute of Technology (2002).

[23] T. Päivärinta, K. Smolander, Theorizing about software devel-
opment practices, Science of Computer Programming 101 (0)
(2015) 124 – 135, towards general theories of software engi-
neering.

[24] P. E. MaMahon, Integrating CMMI and Agile Developement,
Addison-Wesley, 2011.

[25] M. Niazi, K. Cox, J. Verner, A measurement framework for as-
sessing the maturity of requirements engineering process, Soft-
ware Quality Journal 16 (2) (2008) 213–235.

[26] R. Fontana, I. Fontana, P. da Rosa Garbuio, S. Reinehr,
A. Malucelli, Processes versus people: How should agile soft-
ware development maturity be defined?, Journal of Systems
and Software 97 (0) (2014) 140–155.

[27] CMMI Product Team, CMMIR© for Development, Version 1.3,
Tech. rep., Carnegie Mellon University (November 2010).

[28] M. Paulk, A taxonomy for improvement frameworks, in: pre-
sented at the World Congr. Softw. Qual., 2008.

[29] T. Kähkönen, P. Abrahamsson, Achieving cmmi level 2 with
enhanced extreme programming approach, in: Product Fo-
cused Software Process Improvement, Springer, 2004, pp. 378–
392.

[30] M. Fritzsche, P. Keil, et al., Agile methods and cmmi: com-
patibility or conflict?, e-Informatica 1 (1) (2007) 9–26.

[31] M. C. Paulk, Extreme programming from a cmm perspective,
Software, IEEE 18 (6) (2001) 19–26.

[32] C. Vriens, Certifying for cmm level 2 and is09001 with xp@
scrum, in: Agile Development Conference, 2003. ADC 2003.
Proceedings of the, IEEE, 2003, pp. 120–124.

[33] D. J. Anderson, Stretching agile to fit cmmi level 3-the story
of creating msf for cmmi R© process improvement at microsoft
corporation, in: Agile Conference, 2005. Proceedings, IEEE,
2005, pp. 193–201.

[34] M. Pikkarainen, A. Mäntyniemi, An approach for using cmmi
in agile software development assessments: experiences from
three case studies, in: SPICE 2006 conference, Luxemburg,
2006, pp. 4–5.

[35] S. W. Baker, Formalizing agility: an agile organization’s jour-
ney toward cmmi accreditation, in: Agile Conference, 2005.
Proceedings, IEEE, 2005, pp. 185–192.

[36] B. Meyer, Agile!: The Good, the Hype and the Ugly, Springer
Science & Business Media, 2014.

[37] J. A. H. Alegrıa, M. C. Bastarrica, Implementing cmmi using a
combination of agile methods, CLEI Electronic Journal 9 (1).

22

http://agilemanifesto.org
http://agilemanifesto.org

[38] v. n. p. y. p. Marçal, Ana Sofia C and de Freitas, Bruno Celso
C and Soares, Felipe S Furtado and Furtado, Maria Eliza-
beth S and Maciel, Teresa M and Belchior, Arnaldo D, jour-
nal=Innovations in Systems and Software Engineering, Blend-
ing scrum practices and cmmi project management process
areas.

[39] J. Diaz, J. Garbajosa, J. A. Calvo-Manzano, Mapping cmmi
level 2 to scrum practices: An experience report, in: Software
Process Improvement, Springer, 2009, pp. 93–104.

[40] R. Turner, A. Jain, Agile meets cmmi: Culture clash or
common cause?, in: Extreme Programming and Agile Meth-
ods—XP/Agile Universe 2002, Springer, 2002, pp. 153–165.

[41] J. Nawrocki, B. Walter, A. Wojciechowski, Toward maturity
model for extreme programming, in: Euromicro Conference,
2001. Proceedings. 27th, IEEE, 2001, pp. 233–239.

[42] A. Omran, Agile cmmi from smes perspective, in: Informa-
tion and Communication Technologies: From Theory to Ap-
plications, 2008. ICTTA 2008. 3rd International Conference
on, IEEE, 2008, pp. 1–8.

[43] M. Seuffert, Agile Karlskrona test. A generic agile adoption
test. http://mayberg.se/learning/karlskrona-test, last
visit: 12th September 2014 (2009).

[44] SCAMPI Upgrade Team, Standard CMMIR© Appraisal
Method for Process Improvement (SCAMPISM) A, Version
1.3: Method Definition Document, Tech. rep., Carnegie Mellon
University (March 2011).

[45] I. Sommerville, J. Ransom, An empirical study of industrial re-
quirements engineering process assessment and improvement,
ACM Transactions on Software Engineering and Methodology
(TOSEM) 14 (1) (2005) 85–117.

[46] A. R. Hevner, S. T. March, J. Park, S. Ram, Design science
in information systems research, MIS quarterly 28 (1) (2004)
75–105.

[47] R. Wieringa, Design Science Methodology for Information Sys-
tems and Software Engineering, Springer, 2014.

[48] V. Venkatesh, H. Bala, Technology acceptance model 3 and
a research agenda on interventions, Decision sciences 39 (2)
(2008) 273–315.

[49] T. Schweigert, D. Vohwinkel, M. Korsaa, R. Nevalainen,
M. Biro, Agile maturity model: analysing agile maturity char-
acteristics from the spice perspective, Journal of Software:
Evolution and Process 26 (5) (2014) 513–520.

[50] P. Agerfalk, B. Fitzgerald, Flexible and distributed software
processes: Old petunias in new bowls?, Communcations of the
ACM 49 (10).

[51] D. Turk, R. France, B. Rumpe, Assumptions underlying agile
software development processes, Journal of Database Manage-
ment (JDM) 16 (4) (2005) 62–87.

[52] F. Navarrete, P. Botella, X. Franch, An approach to reconcile
the agile and cmmi contexts in product line development, in:
Proceed. of the 1st Internat. Workshop on Agile Product Line
Engineering (APLE’06), 2006.

[53] D. Rosenberg, M. Stephens, Extreme programming refactored:
the case against XP, Apress, 2003.

[54] E. Hossain, M. A. Babar, H.-y. Paik, Using scrum in global
software development: A systematic literature review, in:
Global Software Engineering, 2009. ICGSE 2009. Fourth IEEE
International Conference on, Ieee, 2009, pp. 175–184.

[55] J. Grenning, Launching extreme programming at a process-
intensive company, IEEE Software (6) (2001) 27–33.

[56] M. Ochodek, S. Kopczyńska, Perceived importance of agile re-
quirements engineering practices–a survey, Journal of Systems
and Software 143 (2018) 29–43.

[57] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, S. Shamshir-
band, A systematic literature review on agile requirements en-
gineering practices and challenges, Computers in human be-
havior.

[58] M. Cohn, Succeeding with agile: software development using
Scrum, Pearson Education, 2010.

[59] M. Cohn, User stories applied: For agile software development,
Addison-Wesley Professional, 2004.

[60] M. Fowler, J. Highsmith, The agile manifesto, Software Devel-
opment 9 (8) (2001) 28–35.

[61] D. Carlson, P. Matuzic, Practical agile requirements engineer-
ing, in: Proceedings of the 13th Annual Systems Engineering
Conference, 2010.

[62] M. Kassab, An empirical study on the requirements engineer-
ing practices for agile software development, in: Software En-
gineering and Advanced Applications (SEAA), 2014 40th EU-
ROMICRO Conference on, IEEE, 2014, pp. 254–261.

[63] M. Kassab, C. Neill, P. Laplante, State of practice in require-
ments engineering: contemporary data, Innovations in Systems
and Software Engineering 10 (4) (2014) 235–241.

[64] S. McConnell, Software estimation: demystifying the black art,
Microsoft press, 2006.

[65] P. Hill, et al., Practical Software Project Estimation: A Toolkit
for Estimating Software Development Effort & Duration, Mc-
Graw Hill Professional, 2010.

[66] M. Drury, K. Conboy, K. Power, Obstacles to decision making
in agile software development teams, Journal of Systems and
Software 85 (6) (2012) 1239–1254.

[67] M. Daneva, E. Van Der Veen, C. Amrit, S. Ghaisas, K. Sikkel,
R. Kumar, N. Ajmeri, U. Ramteerthkar, R. Wieringa, Agile
requirements prioritization in large-scale outsourced system
projects: An empirical study, Journal of systems and software
86 (5) (2013) 1333–1353.

[68] M. Cohn, Agile estimating and planning, Pearson Education,
2005.

[69] B. Victor, N. Jacobson, We didn’t quite get it, in: 2009 Agile
Conference, IEEE, 2009, pp. 271–274.

[70] K. S. Rubin, Essential Scrum: A practical guide to the most
popular Agile process, Addison-Wesley, 2012.

[71] E. Bjarnason, K. Wnuk, B. Regnell, A case study on benefits
and side-effects of agile practices in large-scale requirements
engineering, in: Proceedings of the 1st Workshop on Agile
Requirements Engineering, ACM, 2011, p. 3.

[72] L. Cao, Estimating agile software project effort: an empirical
study, AMCIS 2008 Proceedings.

[73] M. Lang, K. Conboy, S. Keaveney, Cost estimation in agile
software development projects, in: Information Systems De-
velopment, Springer, 2013, pp. 689–706.

[74] J. Cho, Issues and challenges of agile software development
with scrum, Issues in Information Systems 9 (2) (2008) 188–
195.

[75] D. Turk, R. B. France, B. Rumpe, Limitations of agile soft-
ware processes, in: Third International Conference on Extreme
Programming and Flexible Processes in Software Engineering,
XP2002, 2002, pp. 43–46.

[76] H. Sharp, H. Robinson, An ethnographic study of xp practice,
Empirical Software Engineering 9 (4) (2004) 353–375.

[77] S. Jalali, C. Wohlin, Agile practices in global software
engineering-a systematic map, in: Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on, IEEE,
2010, pp. 45–54.

[78] H. Holmström, B. Fitzgerald, P. J. Ågerfalk, E. Ó. Conchúir,
Agile practices reduce distance in global software development,
Information Systems Management 23 (3) (2006) 7–18.

[79] S. Berczuk, Back to basics: The role of agile principles in suc-
cess with an distributed scrum team, in: Agile Conference
(AGILE), 2007, IEEE, 2007, pp. 382–388.

[80] B. Boehm, Get ready for agile methods, with care, Computer
35 (1) (2002) 64–69.

[81] E. Hochmüller, R. T. Mittermeir, Agile process myths, in: Pro-
ceedings of the 2008 international workshop on Scrutinizing
agile practices or shoot-out at the agile corral, ACM, 2008,
pp. 5–8.

[82] X. Ge, R. F. Paige, J. McDermid, et al., An iterative ap-
proach for development of safety-critical software and safety
arguments, in: Agile Conference (AGILE), 2010, IEEE, 2010,
pp. 35–43.

[83] A. Sidky, J. Arthur, Determining the applicability of agile
practices to mission and life-critical systems, in: Software En-

23

http://mayberg.se/learning/karlskrona-test

gineering Workshop, 2007. SEW 2007. 31st IEEE, IEEE, 2007,
pp. 3–12.

[84] A. Garg, Agile software development, DRDO Science Spec-
trum (2009) 55–59.

[85] M. McHugh, F. McCaffery, V. Casey, Barriers to adopting
agile practices when developing medical device software, in:
Software Process Improvement and Capability Determination,
Springer, 2012, pp. 141–147.

[86] H. Jonsson, S. Larsson, S. Punnekkat, Agile practices in reg-
ulated railway software development, in: Software Reliability
Engineering Workshops (ISSREW), 2012 IEEE 23rd Interna-
tional Symposium on, IEEE, 2012, pp. 355–360.

[87] S. H. VanderLeest, A. Buter, Escape the waterfall: Agile
for aerospace, in: Digital Avionics Systems Conference, 2009.
DASC’09. IEEE/AIAA 28th, IEEE, 2009, pp. 6–D.

[88] J. Trimble, C. Webster, Agile development methods for space
operations, in: The 12th International Conference on Space
Operations, 2012.

[89] K. Gary, A. Enquobahrie, L. Ibanez, P. Cheng, Z. Yaniv,
K. Cleary, S. Kokoori, B. Muffih, J. Heidenreich, Agile meth-
ods for open source safety-critical software, Software: Practice
and Experience 41 (9) (2011) 945–962.

[90] J. Bowers, J. May, E. Melander, M. Baarman, A. Ay-
oob, Tailoring xp for large system mission critical software
development, in: Extreme Programming and Agile Meth-
ods—XP/Agile Universe 2002, Springer, 2002, pp. 100–111.

[91] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle,
F. Shull, R. Tesoriero, L. Williams, M. Zelkowitz, Empirical
findings in agile methods, in: Extreme Programming and Agile
Methods—XP/Agile Universe 2002, Springer, 2002, pp. 197–
207.

[92] C. R. Jakobsen, K. A. Johnson, Mature agile with a twist of
cmmi, in: Agile, 2008. AGILE’08. Conference, IEEE, 2008, pp.
212–217.

[93] J. Nawrocki, M. Jasiñski, B. Walter, A. Wojciechowski, Ex-
treme programming modified: embrace requirements engineer-
ing practices, in: Requirements Engineering, 2002. Proceed-
ings. IEEE Joint International Conference on, IEEE, 2002, pp.
303–310.

[94] S. Beecham, T. Hall, A. Rainer, Defining a requirements pro-
cess improvement model, Software Quality Journal 13 (3)
(2005) 247–279.

[95] B. Solemon, S. Shahibuddin, A. Ghani, Re-defining the re-
quirements engineering process improvement model, in: Soft-
ware Engineering Conference, 2009. APSEC’09. Asia-Pacific,
Ieee, 2009, pp. 87–92.

[96] B. Solemon, S. Sahibuddin, A. A. A. Ghani, A new matu-
rity model for requirements engineering process: an overview,
Journal of Software Engineering and Applications 5 (5) (2012)
340–350.

[97] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, S. Shamshir-
band, A systematic literature review on agile requirements en-
gineering practices and challenges, Computers in human be-
havior 51.

[98] P. Diebold, M. Dahlem, Agile practices in practice: a mapping
study, in: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, ACM,
2014, p. 30.

[99] R. Hoda, J. Noble, S. Marshall, The impact of inadequate cus-
tomer collaboration on self-organizing agile teams, Information
and Software Technology 53 (5) (2011) 521–534.

[100] M. Korkala, M. Pikkarainen, K. Conboy, A case study of cus-
tomer communication in globally distributed software product
development, in: Proceedings of the 11th International Con-
ference on Product Focused Software, ACM, 2010, pp. 43–46.

[101] P. Abrahamsson, J. Koskela, Extreme programming: A survey
of empirical data from a controlled case study, in: Empirical
Software Engineering, 2004. ISESE’04. Proceedings. 2004 In-
ternational Symposium on, IEEE, 2004, pp. 73–82.

[102] A. Martin, J. Noble, R. Biddle, Being jane malkovich: A look
into the world of an xp customer, in: Extreme Programming

and Agile Processes in Software Engineering, Springer, 2003,
pp. 234–243.

[103] S. Mohammadi, B. Nikkhahan, S. Sohrabi, An analytical sur-
vey of” on-site customer” practice in extreme programming,
in: Computer Science and its Applications, 2008. CSA’08. In-
ternational Symposium on, IEEE, 2008, pp. 1–6.

[104] S. Mohammadi, B. Nikkhahan, S. Sohrabi, Challenges of user
involvement in extreme programming projects, International
Journal of Software Engineering and Its Applications 3 (1).

[105] K. Pohl, Requirements engineering: fundamentals, principles,
and techniques, Springer Publishing Company, Incorporated,
2010.

[106] W. Karl, Software requirements, Microsoft Press.
[107] P. Abrahamsson, O. Salo, J. Ronkainen, Agile software devel-

opment methods: review and analysis, Technical report, VTT
Electronics and University of Oulu (2002).

[108] K. Vlaanderen, S. Jansen, S. Brinkkemper, E. Jaspers, The
agile requirements refinery: Applying scrum principles to soft-
ware product management, Information and software technol-
ogy 53 (1) (2011) 58–70.

[109] J. E. Hannay, H. C. Benestad, Perceived productivity threats
in large agile development projects, in: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, 2010, p. 15.

[110] K. Conboy, X. Wang, B. Fitzgerald, Creativity in agile systems
development: A literature review, in: Information Systems–
Creativity and Innovation in Small and Medium-Sized Enter-
prises, Springer, 2009, pp. 122–134.

[111] R. Muñoz, H. H. Miller-Jacobs, In search of the ideal proto-
type, in: Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM, 1992, pp. 577–579.

[112] J. Arnowitz, M. Arent, N. Berger, Effective prototyping for
software makers, Elsevier, 2010.

[113] T. Memmel, F. Gundelsweiler, H. Reiterer, Agile human-
centered software engineering, in: Proceedings of the 21st
British HCI Group Annual Conference on People and Comput-
ers: HCI... but not as we know it-Volume 1, British Computer
Society, 2007, pp. 167–175.

[114] A. Begel, N. Nagappan, Usage and perceptions of agile soft-
ware development in an industrial context: An exploratory
study, in: 1st Intl Symp. on Empirical Software Engineering
and Measurement (ESEM), 2007.

[115] T. Chow, D.-B. Cao, A survey study of critical success factors
in agile software projects, Journal of Systems and Software
81 (6) (2008) 961–971.

[116] T. Chau, F. Maurer, Knowledge sharing in agile software
teams, in: Logic versus approximation, Springer, 2004, pp.
173–183.

[117] K. Power, Definition of ready: An experience report from
teams at cisco, in: Agile Processes in Software Engineering
and Extreme Programming, Springer, 2014, pp. 312–319.

[118] G. A. Moore, Crossing the Chasm: Marketing and selling high-
tech goods to mainstream customers, New York, HarperBusi-
ness, 1991.

[119] J. Highsmith, Agile project management: creating innovative
products, Pearson Education, 2009.

[120] R. Pichler, Agile product management with scrum: Creating
products that customers love, Addison-Wesley Professional,
2010.

[121] L. Morris, M. Ma, P. Wu, Agile Innovation: The Revolution-
ary Approach to Accelerate Success, Inspire Engagement, and
Ignite Creativity. 2014, New York: Wiley, 2014.

[122] R. Mugridge, W. Cunningham, Fit for developing software:
framework for integrated tests, Pearson Education, 2005.

[123] I. Dees, M. Wynne, A. Hellesoy, Cucumber Recipes: Auto-
mate Anything with BDD Tools and Techniques, Pragmatic
Bookshelf, 2013.

[124] B. Haugset, G. K. Hanssen, Automated acceptance testing: A
literature review and an industrial case study, in: Agile, 2008.
AGILE’08. Conference, IEEE, 2008, pp. 27–38.

[125] N. B. Harrison, A study of extreme programming in a large

24

company, Avaya Labs.
[126] V. Massol, T. Husted, Junit in action, Manning Publications

Co., 2003.
[127] L. Koskela, Test Driven: Practical TDD and Acceptance TDD

for Java Developers, Manning Publications Co., 2007.
[128] C. Soĺıs, X. Wang, A study of the characteristics of behaviour

driven development, in: Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO Conference
on, IEEE, 2011, pp. 383–387.

[129] D. C. Gause, G. M. Weinberg, Exploring requirements: quality
before design, Dorset House New York, 1989.

[130] R. C. Martin, G. Melnik, Tests and requirements, requirements
and tests: A möbius strip, Software, IEEE 25 (1) (2008) 54–59.

[131] S. Yoo, M. Harman, Regression testing minimization, selection
and prioritization: a survey, Software Testing, Verification and
Reliability 22 (2) (2012) 67–120.

[132] C. Lowell, J. Stell-Smith, Successful automation of gui driven
acceptance testing, in: Extreme programming and agile pro-
cesses in software engineering, Springer, 2003, pp. 331–333.

[133] B. Wake, INVEST in good stories and
SMART tasks. http://xp123.com/articles/
invest-in-good-stories-and-smart-tasks/, last access:
08/07/2015 (2003).

[134] K. Boness, R. Harrison, Goal sketching: Towards agile require-
ments engineering, in: null, IEEE, 2007, p. 71.

[135] L. L. Constantine, L. A. Lockwood, Software for use: a practi-
cal guide to the models and methods of usage-centered design,
Pearson Education, 1999.

[136] J. P. Djajadiningrat, W. W. Gaver, J. Fres, Interaction re-
labelling and extreme characters: methods for exploring aes-
thetic interactions, in: Proceedings of the 3rd conference on
Designing interactive systems: processes, practices, methods,
and techniques, ACM, 2000, pp. 66–71.

[137] M. Kajko-Mattsson, Problems in agile trenches, in: Proceed-
ings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, ACM, 2008,
pp. 111–119.

[138] D. M. Berry, Ambiguity in natural language requirements
documents, in: Innovations for Requirement Analysis. From
Stakeholders’ Needs to Formal Designs, Springer, 2008, pp.
1–7.

25

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

	Introduction
	Maturity models and assessment approaches
	Maturity models
	Assessment Approaches

	Research methodology and solution design
	The REMMA model
	The REMMA catalog of practices
	The REMMA relationships between practices
	Context factors in REMMA

	Assessment of practice alignment
	Basic assessment
	Influence assessment
	Contextual assessment

	Related Work
	Conclusions
	Practices catalog
	Context-specific practices

